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ABSTRACT

The gravitational dynamics in flat spacetime can be understood through the holographic

principle, a concept proposed by Gerard ’t Hooft and later by Leonard Susskind and Juan

Maldacena, who played a pivotal role in the development of the principle. In the 1960s, Bondi,

van der Burg, Metzner, and Sachs (BMS) delved into understanding the intricate symmetries of

flat spacetimes, revealing deeper insights into the spacetime structures. Most recently, Andrew

Strominger highlighted the principle and used these symmetry understanding to conjecture

Celestial Holography, establishing a holographic correspondence between the quantum gravity

in 4D asymptotically flat spacetimes and a 2D conformal field theory at the boundary.

In this thesis, we intend to analyze the scattering in Asymptotically flat spacetimes and the

symmetries at the asymptotics with a new understanding of scattering in the flat space limit of

Anti-de-Sitter (AdS) spacetimes.

Symmetries From (Celestial) Holography

Our focus here is on the holographic technique for Asymptotically Flat Spacetimes (AFS),

which maps the fields from the bulk of the spacetime to the boundary conformal operators

sitting at the celestial sphere of the null boundaries of our asymptotically flat spacetimes.

Recent developments in Celestial Holography have suggested the relevant collinear celestial

amplitudes to ascertain asymptotic symmetries in 4D AFS. We used the techniques of celestial

holography to find the asymptotic symmetry algebras for 4D Einstein-Yang-Mills and Einstein-

Maxwell theories recovering the complete local superrotation algebra.

In the other line of work, we found the asymptotic symmetries of N = 8 Supergravity. The

global symmetry algebra of the theory consists of N = 8 superpoincarè algebra and SU(8)R

symmetry algebra. Our study indicates that the asymptotic soft hairs of N = 8 supergravity

theory will not have distinct infinite R-charges. Instead, they will only carry the global fixed

number of R-charges.

Double Copy in Universal Sectors of Scattering

The Double Copy (DC) is a multiplicative bilinear operation to compute the amplitudes of grav-

ity tree-level amplitudes in terms of sums of products of gauge theory tree-level amplitudes.

This well-known technique has wide applications in quantum and classical field theories, in-

cluding string theory, particle physics, and astrophysics. In our analysis, we restrict the DC

formalism to soft and collinear sectors of amplitudes in both gravity and gauge theory.
viii



We established the non-trivial relationships between the amplitudes of these two theories

using DC formalism in celestial basis. Soft and collinear sectors of N = 4 Super Yang-Mills

(SYM) can be double copied individually to result in the soft and collinear sectors of N = 8 Su-

pergravity. Our goal in this work was to construct the dual celestial CFT (CCFT) corresponding

to the bulk N = 8 supergravity in four spacetime dimensions.

Scattering in the flat limit of AdS

S-matrix is a well-defined observable for quantum field theories in flat space-time. However,

for theories in AdS space-time, the S-matrix is not well-defined. In AdS, particles correspond

to irreducible representations of the conformal group, allowing for a connection between QFT

in flat space and QFT in AdS. This connection is established through the relationship that the

S-matrices of flat space can be derived by taking the dimension of the conformal field (∆)

in the CFT correlator to be large when the dual AdS length scale (AdS radius → ∞ limit).

This transition enables a comprehensive understanding of QFT in AdS by utilizing insights

from CFT correlation functions and their connection to the flat space formulation. Here, we

addressed the question of finding the ‘Scattering Matrix’ for the AdS in this flat space limit.

Our primary goal is to understand the Infrared (IR) behavior of this defined S-matrix in the

flat space limit of AdS/CFT. We follow the Momentum space prescription, to define the ‘AdS

S-Matrix’ as the Fourier transform of the position space correlation function in the embedding

space. This encodes all the information on all of the bulk physics in the conformal correlator

in 1/R perturbation theory. We concluded this work with the computations of bulk-to-bulk and

bulk-to-boundary propagators of vector particles.
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CHAPTER 1

INTRODUCTION

Solving a theory implies computing the physical observables encoded in the symmetries of the

theory, and these observables are the scattering amplitudes. On the other hand, the nature of

the scattering amplitudes in Quantum Field Theory (QFT) is fundamental in discovering non-

trivial symmetries of the theory. Every possible symmetry in the theory provides important

constraints on the form and behavior of scattering amplitudes and other observables. This is

ensured by the Ward identities, which are manifestations of symmetries in QFT.

Furthermore, it has been observed that in gauge and gravity theories, there is an enhance-

ment of symmetries at the boundaries of the spacetimes. For such asymptotic boundaries, these

enhanced symmetries are known as the asymptotic symmetries of the spacetime. In four di-

mensions, these asymptotic symmetries have been studied for both gauge and gravity theories,

including supergravity [1–7]. These symmetries in the case of pure gravity and gauge theories

are popularly known as BMS (Bondi–van der Burg–Metzner–Sachs) and large gauge symme-

tries, respectively with some enhancements depending on the kind of theory in considerations

[8–16]. These infinite dimensional asymptotic symmetries also have experimental implications

as in gauge and gravitational memory effects which are the classical observables [17–21]. In

the subsections below, I will highlight the features of Asymptotically Flat Spacetimes (AFSs),

along with brief studies of scattering processes and symmetry constraints.

Considering the motivation of these symmetry studies for gauge and gravity theories, the

soft theorems, infinite-dimensional asymptotic symmetries, and the memory effects are the

three different manifestations of a single framework. This is wonderfully portrayed in Stro-

minger’s Infrared (IR) triangle [11]. I will explain the state of the art and applications of this

incredible observation later in the subsections.

Below, I will start with the definition of Asymptotically Flat Spacetimes and motivate the

reader to study these specific spacetimes in four dimensions. I will then dive into the detailed

descriptions of symmetry along with the algebra constructions. In the end, I will explain how

one can use holography to describe the properties of the spacetimes, which, in our case, contains

new and exciting applications.
1



Chapter 1. Introduction

1.1 Understanding Physics from Asymptotics

In theoretical physics, asymptotics of the spacetimes refers to the behavior of spacetime at great

distances from the sources. These sources can be gravitational or electromagnetic fields. These

studies are important considering the global structure and properties of our universe, especially

the properties of black holes.

Below, I will explain some of the aspects related to the asymptotically flat spacetimes in

(3+ 1) spacetime dimensions. In d ≤ 3 dimensions, there are no local gravitational degrees

of freedom (Gravity is topological!). Amongst the most studied solutions in 3D gravity with

a negative cosmological constant is the BTZ (Banados-Teitelboim-Zanelli) black hole [22–

24]. In the (1 + 1)dimension, gravity is topological as well, with no dynamic solutions to

Einstein’s equation of motion. We need to consider the dilaton gravity (JT Gravity1) to include

the dynamics.

In this work, we will focus exclusively on 4D flat spacetimes.

1.1.1 4D Asymptotically Flat Spacetimes (AFS)

Asymptotically flat spacetimes (AFS) in 3+1 dimensions are rich in physics for describing the

events in gravity in astrophysical time scales. These are the solutions to the Einstein field equa-

tions, which are good approximations of our observable universe2. We study the 4D quantum

gravity scattering S-matrix and the symmetry constraints in our desired class of asymptotically

flat spacetimes. Since the sixties, there have been seminal works to study symmetries of this

kind of spacetimes [4, 15]. These are the solutions to Einstein’s equations for vanishing cos-

mological constants (Λ = 0). One can introduce Penrose compactification to best describe the

asymptotic infinities of Minkowski spacetime [31–34], and this is shown in Fig. 1.1.

This compactification conformally maps our spacetimes to a Lorentzian manifold with finite

extent and boundary that is differentiable everywhere [35]. In our prescription, we will consider

the full deduction of suitable boundary conditions for AFSs. However, one can also consider

the knowledge of AdS spacetimes in flat space limit, which means simply taking (Radius(ℓ)→

∞) limit, which fulfills our demand of flat spacetimes. I will talk about both the classes of

spacetimes in this work. For the time being, let us define our desired class of spacetimes below.

1In these theories, a scalar field, which is our dilaton field, couples to gravity to generate dynamics to the
gravitational field [25–27]. This 2D model offers applications in quantum gravity and holography, while 3D
models reveals features of conical singular solutions in classical and quantum gravity [28–30].

2As the curvature radius is of the order of 1060 in the Planck units.
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i0 i0

i+

i−

I
+

I −

I +

I
−

Figure 1.1: Complactified Mink4 Spacetime. The null boundary of the spacetimes has been
divided into past (orange) null infinities of I− and future (teal) null infinities of I+. Here, the
null (radiations) rays (wavy lines) come all the way from I− to I+. i0 and i± are the spacelike
and timelike boundaries respectively. In the massless scattering, we will study the emitted
radiation particles that will reach our null boundaries.

As I said, to study the asymptotic infinities of the Minkowski spacetime, we need Pen-

rose conformal compactification. This compactified spacetime can be written in terms of the

spherical coordinates (t,r,xA), where the boundaries are at r = ∞. The metric is given by

ds2 =−dt2 +dr2 + r2
γAB dxA dxB. (1.1)

Here, γAB is the metric on the two-sphere with coordinates xA = (θ ,φ) sitting at each and every

point of the compactified spacetime, except at the center (r = 0), as shown in Fig.1.1.

Now, we will introduce retarded and advanced coordinates parametrizing the null bound-

aries of the spacetimes, u = t − r on I+, and v = t + r on I−, respectively.

Geometrically, these spacetimes can be explained by the metric (gµν) in the Bondi-Sachs

coordinates3 (u,r,xA), where u is the retarded time, r is the radial coordinates or the affine

parameter along the null geodesics at constant u hypersurfaces. The solution reads as,

ds2 =−du2 −2dudr+ r2
γABdxA dxB, (1.2)

where, γAB is the unit round metric on the 2−sphere. Now, we can define the metric at the

3not unique [36].
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Chapter 1. Introduction

asymptotic (r → ∞) as

ds2|r→∞ =

(
−1+

2mB

r

)
du2 +2

(
−1+O(1/r2)

)
dudr+

(
r2

γAB +O(1)
)

dxA dxB,

+ rCABdxAdxB +

(
DBCAB +

1
r

(
4
3
(NA +u∂AmB)−

1
4

∂B
(
CDECDE)))dudxA + . . . .

(1.3)

These spacetimes are obtained when we take the r → ∞ limit of the Minkowski spacetime at

constant u and xA. Here, we demand certain boundary conditions on the metric components at

the asymptotics, which can incorporate all the physical spacetimes.

Here, we define

- mB(u,xA) is the Bondi mass aspect, which defines the total angular energy density of

the spacetime measured by an observer at a particular time u along xA direction. After

integrating over the sphere, this results in the total Bondi mass.

- NA(u,xA) is called the Bondi angular momentum aspect, which measures the total angular

momentum density of the spacetime with respect to the origin (r = 0) in the Penrose

diagram. After integrating over the sphere, we get the total angular momentum.

- CAB(u,xA) is a traceless field tensor (γABCAB) encoding the gravitational radiation infor-

mation. This component of the metric is transverse to the null boundary.

- DA is the covariant derivative with respect to the metric γAB on the unit sphere S2.

The metric solutions that satisfy this kind of boundary fall-offs of the metric components at

r → ∞ as given in Eq. (1.3) are our desired asymptotically flat metrics. Specifically, they are

[35],

guu =−1+O
(

1
r

)
, gur =−1+O

(
1
r2

)
, guA =O (1) , gAB = r2

γAB +O (r) . (1.4)

Here, we used a particular gauge condition that fixes all the local diffeomorphisms at the asymp-

totics, which is famously called Bondi Gauge conditions and is given by

∂r det
(gAB

r2

)
= 0, grr = grA = gAB = 0. (1.5)
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1.1. Understanding Physics from Asymptotics

Let us say we have some matter stress tensor T M
µν , and the geometry of the spacetime is

governed by Einstien’s equations,

Rµν −
1
2

gµR = 8πGT M
µν . (1.6)

Now, once we substitute the metric defined in Eq.(1.3) in Einstein’s equations, we get some

constraint equations [35],
∂umB =

1
4

DADBNAB −Tuu,

∂uNA =−1
4

DB (DBDECFE −DFDECBE
)
+u∂A

(
Tuu −

1
4

DBDECBE

)
−TuA,

(1.7)

where 
Tuu =

1
8

NABNAB +4π lim
r→∞

(
r2T M

uu
)

TuA = 8π lim
r→∞

(
r2T M

uA
)
− 1

4
∂A
(
CEFNEF)+ 1

4
DE
(
CEFNFA

)
− 1

2
CABDENBE

These constraints show that the boundary data are specified by the values of mB, CAB, NA, and

NAB at I±.

In this thesis, we use the stereographic complex coordinates (z, z̄) on the sphere, which is

helpful in the study of celestial holography.

Stereographic coordinates:

(θ ,φ)→ (z, z̄); z = cot
θ

2
eiφ , z̄ = cot

θ

2
e−iφ ,

Such that the metric on the sphere becomes,

γABdxA dxB = 2γzz̄ dz dz̄,

where4, γzz̄ =
2

(1+zz̄)2 is the round metric on the S2 in the coordinates defined (z, z̄). We interpret

z= 0 and z=∞ as the north and south poles of the sphere, respectively, with the equator defined

at zz̄ = 1. The points at the past and future null infinities are identified using the antipodal map

defined as z →−1
z̄ , which is important in defining the continuity of fields at the spatial infinities

4we have chosen the phase factor φ = 0 [37].
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Chapter 1. Introduction

[11]. This relates to the boundary data of past and future null infinities. Hence, it is important

to consider the equivalence of BMS charges across spatial infinity.

In this coordinate system, our asymptotically flat metric defined in Eq.(1.3) becomes,

ds2|r→∞ =

(
−1+

2mB

r

)
du2 +2

(
−1+O(1/r2)

)
dudr+2

(
r2

γzz̄ +O(1)
)

dz dz̄,

+

[
rCzzdz2 +

(
DzCzz +

1
r

(
4
3
(Nz +u∂zmB)−

1
4

∂z (CzzCzz)

))
dudz+ c.c.

]
+ . . . .

(1.8)

Next, we need to define our asymptotic phase space with a few restrictive boundary conditions

that will allow for all of our physical spacetimes. Hence one can find the boundary falloffs at

r → ∞ in stereographic coordinates as [11],



guu =−1+O
(

1
r

)
,

gur =−1+O
(

1
r2

)
,

guz =O(1), gzz =O(r),

gzz̄ = r2
γzz̄ +O(1), grr = grz = 0.

(1.9)

In the next section, we will see that the symmetry group at the asymptotics is larger than the

exact symmetry group of the flat spacetimes in the bulk by studying the scattering in AFSs.

Before that, let us briefly discuss the radiation fluxes that one can observe at the boundary of

spacetime.

Radiation Fluxes

The radiation zone of asymptotically flat spacetimes is the future null infinity I+, which is

topological S2 ×R, where we can collect all the information about the null rays and gravita-

tional waves (GWs).

As one can see in Eq.(1.3), we have the information about the gravitational radiations en-

coded in the field tensor Czz(u,z, z̄) [11, 35, 38]. This is a traceless tensor that implies the two

physical degrees of freedom (Czz,Cz̄z̄) corresponding to the GWs. The physical observable is the

change of this field along u direction represented by the Bondi News tensor [38], Nzz = ∂uCzz.

This is the analog of the electromagnetic field strength in electrodynamics (Fuz = ∂uAz), and

the square, the energy flux across the null infinities relates to the Gravitational energy flux
6



1.2. Scattering In 4D AFSs

[11]. The asymptotic metric given in Eq.(1.3) is the solution to Einstein’s equation, which con-

strains mB and Nz(z̄) as shown in Eq.(1.7). This implies our boundary radiation data at I± are

{mB,Czz,Cz̄z̄,Nz(z̄)}.

1.2 Scattering In 4D AFSs

Symmetries in a quantum field theory are the most important features. Solving a theory means

computing the scattering amplitudes in terms of the correlation functions5. This is often dic-

tated by the number of symmetries the theory possesses, which puts constraints on the corre-

lation functions. These symmetries in the theory are reflected in the scattering amplitudes via

the Ward identities. This is called bootstrapping and has been a very effective tool in confor-

mal field theory [40–42]. This also goes in the reverse direction; that is, knowledge about the

nature of amplitudes can help us discover non-trivial symmetries of the theory. I will focus on

the scattering processes in 4D Mikowski spacetimes (Mink4). So, our motivation is to answer

the question,

How asymptotic symmetry constrain dynamics at I± for massless scattering in Mink4?

Symmetries play important roles in theories coupled to gravity in scattering processes for

Mink4. In all these works, we are solely focused on studying the dynamics of the null bound-

aries of compactified (Mink4) for the scattering of massless particles, and I will discuss the

gauge-invariant on-shell scattering amplitudes.

1.2.1 Scattering S-Matrix in Gauge theory

Let us demonstrate an example of scattering in Quantum Electrodynamics (QED) (Abelian

Gauge theory). In this theory, we have the symmetry as global U(1) along with the global

Poincaré symmetry in the absence of any massless charged particles, and corresponding con-

served charges can be measured at the spatial and null boundaries of the spacetime. Now, once

we introduce some massless charged particles in our system, we will encounter charge fluxes

throughout the null boundaries. At each point of I±, we have an S2 sitting which is associated

with many different charges (cf. [11, Section 2: QED]). This means the symmetry of I± is not

5Generically, this can be done using the LSZ formulation. In celestial holography, in terms of the conformal
basis, we use an alternative prescription to LSZ to extract the massless scattering S-matrix. The in/out states are
computed by integrating the gauge field or the metric along the null ray at past and future null infinities of our
AFS. Conformal operators of different conformal dimensions are prepared with the operators integrated along the
null rays, and the correlation function of these operators gives the S-matrix elements for any massless theory [39].

7



Chapter 1. Introduction

any more global U(1). The non-trivial charge fluxes in the presence of charged particles at I±

enhance this global U(1) to infinite dimensional large U(1) gauge symmetry transformations

at the sky of our Mink4. Here, by sky6, I mean the full null boundaries of our conformally

compactified Minkowski spacetime as shown in Fig.1.1.

Now the question comes

What is this infinite-dimensional large gauge transformations?

Any gauge theory has gauge redundancies, which are unphysical degrees of freedom of the

theory. We must fix these redundant gauge freedoms to make the theory physically relevant7.

Our gauge field transforms (in the Bondi parameter space) as Az(u,z, z̄)→ Az(u,z, z̄)+∂zε(z, z̄).

After imposing the Lorentz gauge condition, we can have some leftover residual gauge trans-

formations8. These leftover transformations are our large gauge symmetry transformations,

which are locally relevant physical solutions of the gauge vector fields, which create the zero-

momentum (soft) photons at the boundary. So, these are the asymptotic symmetries in a gauge

theory. One can find the explicit derivations to asymptotic symmetries and transformation in

the work by Strominger et al. here in [6, 11].

This means large gauge symmetry transformations are represented by functions ε(z, z̄)

parametrized on the conformal sphere at I±. In case of scattering in asymptotically flat Mink4,

we have a bunch of incoming photons coming all the way from the I− creating matter charge

current Jµ

M outgoing towards I+. However, one can find discontinuity of the spacetime at

the spatial infinity i0, which implies the discontinuity of the (leading) electromagnetic field

strength tensor near i0. This issue has been taken care of by the Lorentz invariant anti-podal

matching between the spheres sitting at the past of I+(I−
+ ) and the future of I−( I+

− ) near i0

[11]. Hence, this implies a smooth functional parametrization on the 2D conformal sphere,

which is also anti-podally identified. This concludes that we have infinite charge conservation

for every function ε(z, z̄) on the S2 at each point (z, z̄) of the boundary: Q+
ε = Q−

ε .

Quantum scattering amplitude is written as ⟨out|S|in⟩, where S denotes the scattering S-

6In the language of Celestial holography, we frequently use the word ‘celestial’ referring to the sky or the
boundary of our spacetime.

7This is analogous to residual diffeomorphism in gravity acting on the metric field gµν .
8This corresponds to the solutions of □ε = 0 at the boundaries of I±.

8



1.2. Scattering In 4D AFSs

matrix. Then, we have the statement of charge conservation as follows,

⟨out|Q+
ε S −SQ−

ε |in⟩= 0. (1.10)

In retarded coordinates, we have the charge [11],

Q+
ε =

1
e2

∫
I+
−

dz2
γzz̄εF(2)

ru (1.11)

Here, F(2)
ru is the 1/r2 order term in the expansion of ru component of the electromagnetic field

strength tensor around the null infinity. After a bit of simplification using the constraint from

the r → ∞ of Maxwell’s equations (∇µFµν = e2 jν), we get the simplified expression for charge

as [11],

Q+
ε =− 1

e2

∫
I+

dudz2
(

∂zε F(0)
uz̄ +∂z̄ε F(0)

uz

)
+
∫
I+

dudz2
εγzz̄ j(2)u . (1.12)

The above expression implies that, the localized charge at each point (z, z̄) of the sphere is

factorized as,

Q±
ε = Q±(Soft)

ε +Q±(Hard)
ε (1.13)

Here, the first term in Eq.(1.12) is soft charge, which is linear in the electromagnetic field, and

the nonlinearity of the electromagnetic field and the charge current is included in the second

term as the hard part of the charge.

Suppose in the scattering, we have N1 number of incoming and N2 number of outgoing

particles of charges Qin, and Qout, respectively. Schematically the action of this Soft/Hard

charge at I± for each value of ε(z, z̄) on the in-state are given by [11],

Q−(Soft)
ε |in⟩= 2

∫
d2z ∂zε(z, z̄) ∂z̄N−(z, z̄)|in⟩,

Q−(Hard)
ε |in⟩=

N1

∑
m=1

Qin
m ε(zin

m , z̄
in
m)|in⟩.

(1.14)

similarly, we have the action on the out-state. Here, the soft charges are the integrated value of

the soft photon field N±(z, z̄) on the sphere, defined as ∂zN ≡ 1
e2

∫+∞

−∞
duF(0)

uz .

From Eq.(1.10), one can see the infinite number of Ward identities (corresponding to each
9



Chapter 1. Introduction

value of ε). Hence, we can write,

⟨out|Q+(Soft)
ε S −SQ−(Soft)

ε |in⟩=
[ N1

∑
m=1

Qin
m ε(zin

m , z̄
in
m)−

N2

∑
n=1

Qout
n ε(zout

n , z̄out
n )
]
⟨out|S|in⟩ (1.15)

This says that the conserved charges corresponding to these symmetries commute with the

S-matrix. These statements are precisely the statements of soft photon theorems of asymp-

totic scattering in case of our abelian U(1) gauge theory9[45, 47–57]. Although soft theorems

and asymptotic symmetries are studied independently, in 2010, Strominger discovered the in-

triguing relations between these two, which are mathematically related by Ward identities of

asymptotic symmetries of a theory [12, 15, 47].

In the language of 2D CFT on the sphere, the symmetry current corresponding to this large

gauge transformations are the U(1) Kac-Moody current on the two-sphere at the null boundary

[6, 58–61].

Now, let us talk about an infinite number of soft gluon emissions in the scattering process

in non-abelian gauge theory.

Non-Abelian Gauge Theory:

Conserved asymptotic gauge-invariant electric and magnetic charges are defined for non-abelian

gauge theories for asymptotic field configurations [62–66]. Non-abelian gauge theory (e.g.,

Pure Yang-Mills Theory10 is not confined and asymptotically free [11, 67–69]. Hence, the

asymptotic detectors can observe the soft gluons.

In perturbative computation [67, 70], the asymptotic states are formed by the action of the

creation and annihilation operators of the hard external particles of momenta pi,

∏
i

a†
ci,hi

(pi)|0⟩= |Ωci,hi(pi)⟩ (1.16)

where, ci and hi are the color index and the helicity of the ith particle.

We can interpret this Fock vacuum as the dressed11 vacuum. Now an N-particle IR diver-

9These are the statements for scattering amplitudes associated with zero-momentum (soft) photon emissions
[12, 43–46]. These statements are related by Fourier transformation to the Electromagnetic memory effects [20].

10In case of hadronic quark-gluon model of QCD with an SU(3)color, quarks are not asymptotically free, which
means color symmetry is an exact symmetry, hence because of the color-singlet bound states, hadronic amplitudes
should have no infrared singularities [67].)

11This Fock vacuum is the eigenstate of the linearized charge with zero eigenvalues. This can be understood
in the Faddeev-Kulish (FK) approach to the perturbative theory in the non-abelian case. The hard external parton

10



1.2. Scattering In 4D AFSs

gent perturbative S-matrix element of the Yang-Mills theory between these asymptotic states

is given by,

MN({pi,hi,ci}) = ⟨{pi,hi,ci}
∣∣
i∈outS

∣∣{pi,hi,ci}⟩i∈in

= gN−2
YM

∞

∑
ℓ

g(ℓ)YM M(ℓ)({pi,hi,ci})
(1.17)

We can now study the behavior of these amplitudes when individual gluons become soft and

their corresponding asymptotic charges. At the tree level, we have

lim
ωq→0

M(0)
N+1({pi,hi,ci}) = gYM S(0)({pi},q,εq)M(0)

N ({pi,hi,ci}) (1.18)

where, the leading gluon soft factor upon q → 0 limit becomes

S(0)({pi},q,εq) = ∑
i∈out

pi.ε(q)
pi.q

tc
i − ∑

i∈in

pi.ε(q)
pi.q

tc
i .

The soft (zero-momentum) gluon behavior of this Yang-Mills amplitude in the infrared limit

gives us infinite non-abelian charge conservation at the boundary, which are related to soft

gluon theorems via Ward identities [62, 71–73].

The soft photon in our scattering matrix in 4D is equivalent to insertions of a U(1) Kac-

Moody current on the S2 at the boundary. The current on the 2-sphere of null infinities gener-

ates the U(1) Kac-Moody Current algebra, and the same for the 4D non-abelian gauge theory

with gauge group G is called G Kac-Moody Current algebra [2, 74]. The soft gluon theorems

are the Ward identities associated with the Kac-Moody symmetries, which are the asymptotic

symmetries of non-Abelian gauge theories.

QCD in particular:

In the case of QCD, the coupling decreases at high energies. We have the coupling,

g2
Y M(k2) =

1
β0 ln(k2/Λ)

,

where β0 is a constant, and k is the energy of the process. Here, Λ is the scale at which the

coupling becomes strong as low energy.

One can see that due to the logarithmic nature, the coupling increases with decreasing

dressing factors comprise the soft gluons, which cancel the IR divergences.

11
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energy (k2 → 0). This means that the coupling becomes large at low energies. As a result of

this, we can’t rely on the perturbation theory. However, one can opt for perturbative analysis

once we have our energy k2 > Λ. This makes the coupling g2
Y M smaller. This implies our

perturbative energy scale is defined below 1/Λ.

Hence, in pure Yang-Mills or non-abelian gauge theory, when we talk about the soft parti-

cles, we refer to the energy of the soft particle as very less compared to the energy scale of the

theory. The above analysis validates our perturbative analysis in non-abelian gauge theory.

In the next section, I will explain gravitational scattering in particular.

1.2.2 Scattering S-Matrix in Gravity

S-Matrix in Gravity are the observables in Quantum Gravity (QG) [75–80]. One important

consideration from the aspects of QFT is to find the amplitudes to be gauge-invariant and can

be calculated in terms of correlation functions.

We are more focused on the scattering processes involving massless particles because of our

interest in gravitational wave emissions. Unitary and Lorentz invariant Scattering S-matrix in-

volving massless particles impose strong constraints on the gravitational dynamics. Taking the

motivation from the string scattering amplitudes, Veneziano et al. studied the high energy be-

havior of the massless graviton scattering amplitudes [81]. Recently, these scattering processes

have been highlighted because of the discoveries of gravitational waves by the LIGO-VIRGO-

KAGRA (LVK) and IndiGO Collaborations [82–85]. Recent state-of-the-art calculations show

applications in the classical scattering processes from the quantum scattering amplitude meth-

ods12 [86–94]. Relevant gravitational scattering amplitudes have been studied through the S-

matrix bootstrap program using BCFW recursion [95–97] and BG recursion algorithms [98–

103] for tree amplitudes, which are extended to loop level using unitary methods [104].

The scattering matrix element describing the process of scattering of n in coming and N−n

outgoing particles is given by

S f i = ⟨p1, p2, · · · pn|pn+1, · · · pN⟩= i(2π)4
δ
(4)( N

∑
i=1

pi
)
M(pi,hi,si). (1.19)

Here, M is our Lorentz invariant scattering amplitudes, which is a function of momentum (pi),

helicity (hi), and any internal quantum number (si) of the particles. This transition satisfied the

12Double Copy relations reviewed in section 1.5.
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1.2. Scattering In 4D AFSs

crossing symmetries13 between the incoming and outgoing particles. Hence, we can assume

all the momenta pi, i = 1, · · · ,N are to be unidirectional (either incoming or outgoing based on

your convenience). Hence, the conservation of momenta becomes14, ∑
N
i=1 Pi = 0.

This probability amplitude for particles scattering off one another in the presence of a grav-

itational potential plays a crucial role in understanding gravitational interactions. In short,

scattering S−matrix in gravity acts as a bridge between classical and quantum gravity, helping

scientists to understand our universe at a fundamental level.

Now, in this regard, we think classical observers might need some help. So,

How can a quantum observer help a classical observer being at infinities?

The answer could be Universalities! Yes, universalities of the high energy scattering processes

have been studied and applied for gravitational wave observations.

1.2.3 Universalities of Scattering Amplitudes

In general, every symmetry leads to constraints on physical observables, such as the scattering

amplitudes. We will discuss the two universal features of scattering amplitudes, which come

in the Infrared and collinear regimes. These are the two common sources of divergences in

scattering studies.

Collinear divergences are important concepts that arise in the process involving massless

particles when the angle between the momenta goes to zero. These divergences can be factor-

ized, which means the divergent part of the amplitudes can be separated from the finite part. In

the language of CFT, this limit typically refers to the situation where two operators approach

each other along a specific direction on the conformal sphere. I will highlight this later in the

chapters.

Soft divergences arise when the energy of a massless particle becomes small. The amplitude

becomes infinite due to the long-range nature of the interactions mediated by these infinite

numbers of soft massless particles. For classical scattering, this ultra-relativistic limit of the

13The scattering amplitude is a complex function of the momenta of particles. This function can be analytically
continued to the other regions of our momentum space. When we analytically continue to the region where the
momentum of a particle changes sign, we can get a relation to our initial amplitude. The change of sign of the
momenta physically means treating the particle as the antiparticle. This is crossing symmetry.

14This can be considered for a scattering process of N massless particles with p2
i = 0 in the Spinor-Helicity

(SH) basis as ∑
N
i=1⟨li⟩[im] = 0. For reference, one can see the review in 1.2.4. The scattering amplitude M can be

written in the SH basis as, M(λi, λ̄i,si).
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Chapter 1. Introduction

scattering helps us to find observables in relation to soft graviton theorems in gravity15 and

supergravity theories16 [107–112]. Let us discuss these relationships in a bit of detail.

Soft Factorization:

The soft limit of the amplitude is defined by taking the momenta of one or more external

particles to zero17. Quite generally, under the soft limit, the amplitude factorizes into a universal

(soft) factor, which contains the divergent part of the amplitude times the amplitude without the

soft particle(s) insertions. This factorization is known as the soft theorem.

We have any n−point gravity scattering amplitude with one soft particle,

Mn (· · · ,a,s,b, · · ·)
ps→0−→ SoftGravity (a,s,b)Mn−1(· · · ,a,b, · · ·). (1.20)

where ps is the momenta of the soft field and a,b are the adjacent fields18. I will explain this

explicitly in the case of pure Yang-Mills (YM) theory as an example later in chapter 2. At the

tree level, the soft factor is given by

SoftGravity(a,s,b) =
1
ε3 Soft(0)Gravity(a,s,b)+

1
ε2 Soft(1)Gravity(a,s,b)+

1
ε

Soft(2)Gravity(a,s,b)

(1.21)

where ε is the soft momentum parameterization, which means ε → 0 is our soft limit [113, 114].

The label (0), (1), and (2) indicate the leading, subleading, and sub-subleading universal soft

terms for tree-level gravity amplitudes. Similarly, for gauge theories, like (Super)Yang-Mills

up to subleading, we have the universal soft factors at tree level,

Soft(S)YM(a,s,b) =
1
ε2 Soft(0)(S)YM(a,s,b)+

1
ε

Soft(1)(S)YM(a,s,b).

Soft limits of amplitudes at the tree level provide important new insights about the symmetries

of certain theories [47, 49, 50, 115, 116]. For example, as I explained in the previous sections,

15Of course, these universalities are true in gauge theories also.
16Especially maximally supersymmetric theories like N = 4 super Yang-Mills and N = 8 supergravity is our

natural laboratory for some classical analysis. The simplicity comes from the potential UV finiteness at all loop
orders [105] in supergravity. High symmetries in the theories lead to exact analytic solutions for various physical
quantities (like precise checks in N = 4 SYM), help in understanding the gauge/gravity dualities, multi-loop
calculations of scattering amplitudes, etc.[106].

17The particle has to be massless for such a limit to make sense.
18When a virtual particle goes on-shell, there will be two possibilities, for the soft particle to get attached to.

One to each of the adjacent external legs. Hence, after taking the soft limit, the soft factors will have information
of these two adjacent external legs. This is shown in figure 2.3 in section 2.4 of chapter 2 with an example in pure
YM theory.
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1.2. Scattering In 4D AFSs

soft gluon theorem in Yang-Mills theory is related to large gauge transformations and soft

graviton theorem in Einstein’s gravity is related to the so-called Bondi-Metzner-Sachs (BMS)

symmetries [8–11]. I will discuss the infinite symmetries of the asymptotics in detail in the

upcoming sections.

This universal factorization can be extended to subleading order in electromagnetism and to

sub-subleading order in gravity [12, 43–46, 48, 55, 57, 117–121]. Thus, studying the soft limits

of amplitudes, even at the tree level, can teach us more about the symmetries of the theory.

Collinear Factorization:

Another important limit of amplitudes is the collinear limit, which is when we have the mo-

menta of two massless external particles are taken to be collinear. Again, the amplitude fac-

torizes into a collinear factor containing the divergence times the amplitude with the collinear

particles replaced by another particle [89, 103, 122–125].

In the collinear limit, we take the momenta of two adjacent particles p1 and p2 to be

collinear. Under this limit, the two particles can fuse to give another particle with momen-

tum p12 = p1 + p2. We parametrize the momenta of the collinear massless particles,

p1 = x p12, p2 = (1− x) p12,

where x corresponds to the combined momentum p12. Since p1 + p2 = p12, we see that, for

massless fields, the collinear limit p1||p2 implies p1 · p2 ∝ p2
1 = 0 which is equivalent to the

condition p2
12 → 0. We have the Collinear amplitude as,

Mn(1h1 ,2h2, . . . ,n)
1||2−→ ∑

h
SplitGravity

−h (z,1h1,2h2)Mn−1(ph, . . . ,n), (1.22)

where the above split factor has all the collinear divergences of the scattering process having

all the information of the two collinear particles [126].

I will thoroughly review these universal factorizations of amplitudes, with examples in the

upcoming chapters, especially being focused in celestial basis considering our application in

Celestial Holography. In this context, these two limits of the scattering amplitudes are the basic

ingredients for constructing celestial scattering amplitudes.

In the next subsection, I will introduce the Spinor-Helicity Formalism, which is considered

to be helpful and heavily used in our analysis of scattering amplitudes and symmetry studies.
15



Chapter 1. Introduction

1.2.4 A brief review of Spinor-Helicity (SH) Formalism

The helicity spinors are left and right-handed representations of the Lorentz group SO(1,3)∼

SL(2,C). We denote the left and right-handed helicity spinors by hα and h̃α̇ respectively.

Lorentz invariant contractions of spinors is defined using the completely antisymmetric rank 2

tensor εαβ defined as

ε
αβ =−εαβ = ε

α̇β̇ =−ε
α̇β̇

=


0 1

−1 0

 . (1.23)

The contractions are then defined as

⟨λ χ⟩ ≡ εαβ λα χβ = λα χα =−λ α χα =−⟨χλ ⟩

[λ χ]≡ ε
α̇β̇

λ̃ α̇ χ̃ β̇ = λ̃ α̇ χ̃α̇ =−λ̃α̇ χ̃ α̇ =−[χλ ].

(1.24)

Wherever we have angular brackets, we understand that it is the contraction of the left-handed

spinor, whereas the square bracket is the contraction of the right-handed spinor. We thus sug-

gestively denote left handed spinor by |λ ⟩α and right handed spinor by [λ |α̇ . A given null

momentum pµ can be written as a bispinor

pαα̇ = σ
αα̇
µ pµ =


p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

≡ |p⟩[p| (1.25)

where σµ = (1,σx,σy,σz) and |p⟩, [p| are some spinors. For real physical momentum, the two

spinors and their contractions are related by complex conjugation ([p|)∗ = |p⟩) and ⟨pq⟩∗ =

[qp]. Given the bispinor of a 4-vector pµ , we can recover the 4-vector as follows:

pµ =
1
2

σ
µαα̇ pα̇α =

1
2

σ̄
µ

α̇α
pαα̇ ,

16



1.3. Asymptotic Symmetries in Gravity

where σ̄µ = (1,−σx,−σy,−σz). The inner product of two null momenta pµ = |p⟩[p| and

qµ = |q⟩[q| is given in terms of spinor contractions as

p ·q =
1
2
[pq]⟨qp⟩. (1.26)

If we have several momenta, which is usually the case in scattering processes, say p1, . . . , pn,

then we shorten the notations further and denote the corresponding spinors by |i⟩, [i| for i =

1, . . . ,n. The momentum conservation can then be expressed as

n

∑
j=1

⟨i j⟩[ ji] = 0 (1.27)

for pi = |i⟩[i|. i be any one out of the n external momenta. One can also express polarisations

in terms of spinors but we will not need it explicitly in our discussions.

Now, let us discuss the symmetries of the Asymptotically flat spacetimes.

1.3 Asymptotic Symmetries in Gravity

It has been observed that in gauge and gravity theories, there is an enhancement of symmetry

at the boundaries. For asymptotic boundaries, such enhanced symmetries are known as the

asymptotic symmetries. Moreover, a deeper understanding of these symmetries might help in

understanding the black hole microscopics [127–131]. This necessitates the computation and

analysis of asymptotic symmetries.

The usual method of finding asymptotic symmetry of a theory is governed by finding sym-

metry transformation parameters for various fields that preserve their falloff conditions at the

boundary. For a theory of gravity, we look for asymptotic isometry transformations that leave

the boundary falloffs of various gravitational fields intact. The falloff conditions are determined

with respect to the asymptotic geometry. In addition to fall-offs in Eq.(1.9), our search for

Asymptotically flat spacetime is towards finding the most general diffeomorphisms preserving

Bondi gauge conditions in Eq.(1.5).

1.3.1 Bondi–van der Burg–Metzner–Sachs (BMS) at Infinites

In one of his works in the line of understanding symmetries [5], R. Sachs mentioned the re-

quirement of Asymptotically Flat Spacetimes (AFS) to understand inhomogeneous Lorentz

transformation symmetry (Poincaré symmetry) as the approximate symmetry, which breaks
17



Chapter 1. Introduction

in the presence of dynamical gravitational fields. Quantum mechanically, these approximate

symmetries become accurate. For this kind of AFS, the work of Bondi, Metzner et al. [8–10]

implies that, with the appropriate boundary conditions, we can obtain a symmetry enhance-

ment in the presence of gravitational fields. The corresponding symmetry group at that time

was named the generalized Bondi-Metzner group, which was later translated as the Bondi–van

der Burg–Metzner–Sachs (BMS) group [11].

BMS is the semi-direct product of the Lorentz Transformation (LT) group acting on an infi-

nite dimensional abelian group of supertranslations. We have our well-known global Poincaré

transformations in the bulk enhanced to global BMS at the boundaries. This can be written

symbolically as, 
Poincaré Group = Lorentz Group ⋉ Translationy

Global BMS = Lorentz Group ⋉ Supertranslation

• Lorentz Transformation (LT): We have the isomorphism, SO(3,1) ≡ SL(2,C)/Z2.

Hence, this becomes a two-dimensional Conformal transformation (Möbius Transfor-

mation) at the asymptotic two-sphere. Hence, one can express the LT in terms of the

SL(2,C) matrices, which act on the asymptotic coordinates of our AFS spacetime. Hence,

(z, z̄) 7−→
(

az+b
cz+d

,
āz̄+ b̄
c̄z̄+ d̄

)
,


a b

c d

 ∈ SL(2,C). (1.28)

• Supertranslation: At I± (R× S2), we have an infinite dimensional translation of the

advance or retarded coordinates. This transformation is parameterized by any angle-

dependent function on the sphere and is popularly called supertranslation transforma-

tions. Hence, we have an infinite of translations,

u → u+ f (z, z̄),

where, u = t − r are the retarded time, and (z, z̄) are the stereographic coordinates on the
18



1.3. Asymptotic Symmetries in Gravity

sphere of I+. When f (z, z̄) = constant, we have u-translation generated at the bound-

ary. f (z, z̄) = Y (−1,0,+1)
1 , harmonics on CS2 generates three spatial translation for ℓ = 1

harmonics and one time translation for ℓ = 0 harmonic. These global translation killing

vector fields ξ ( f ) on the ℓ= 0 and ℓ= 1 spherical harmonics preserve the Bondi gauge

and the metric fall-offs at r → ∞. Any generic function allows separate translations along

every null generator of I+.

Here is a little demonstration of the broken supertranslation symmetry [12, 15, 132] at

the boundaries of our AFSs. The Lie action on the boundary data {Nzz,mB,Czz} are given

by, 
L f Nzz = f ∂uNzz,

L f mB = f ∂umB +
1
4
[
NzzD2

z f +2DzNzzDz f + c.c.
]

L fCzz = f ∂uCzz −2D2
z f .

(1.29)

All the quantities in the above are defined in section (1.1.1).

A brief remark:

Let us define the Mink4 vacuum as
∣∣∣{Nzz = 0,mB = 0,Czz = 0}

〉
. The Lie derivative

action along the supertranslation killing vector on the defined Minkowski vacuum from

Eq.(1.29) implies,

L fCzz ̸= 0. (1.30)

This means our vacuum is supertranslated. One can notice here that this supertranslated

spacetime has mB = 0 and Nzz = 0. This is consistent with the fact that the physical mass

of our spacetime remains invariant under diffeomorphism transformations. However, we

have non-zero Czz and to make this vanish, we have to take Czz =−2D2
zC, where C(z, z̄)

parametrizes classically inequivalent vacua19 [11]. Hence, Eq.(1.30) can be written as,

L fC = f , (1.31)

which implies C →C+ f under supertranslation20.

One can find the asymptotic supertranslation charges corresponding to this symmetry,

19C is the Goldstone boson for broken supertranslation symmetry.
20Note: For f (z, z̄)=Y m

ℓ , for ℓ= 0,1 the action of the covariant derivative vanishes. Hence, the global spacetime
translation is not broken at the boundaries of our Mink4.
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Chapter 1. Introduction

which is defined as [11],

Q+
f =

1
4πG

∫
I+
−

d2z γzz̄ f mB. (1.32)

This is the surface charge at I+
− . Similarly, we can have the expression for Q−

f on I−
+ . Read-

ers can find the explicit derivations to the charge expression in the recent work by Andrew

Strominger in [11].

Extended BMS (e-BMS)

Now we understand that the global BMS corresponds to the six global Lorentz rotational gen-

erators with the supertranslation on the celestial sphere. So the question comes,

What if we have a generic vector field parametrization at every angle on the CS2?

By this, we mean the global conformal transformation in Eq.(1.28) can be localized to local

transformations, which preserves the asymptotic boundary metric infinitesimally. This local

transformations are called superrotaions on the boundary sphere [133, 134]. Hence, we have

the infinite-dimensional semi-direct product of extended BMS (or e-BMS) as,

local e-BMS = Superrotations ⋉ Supertranslations.

Let’s say that the vector parameterization is XA(z, z̄); then, similar to supertranslation, we can

write the superrotation charge on the boundary sphere as [11],

Q+
X =

1
8πG

∫
I+
−

d2z [Xz̄ Nz +XzNz̄] . (1.33)

BMS4 symmetry is physically relevant for our gravitational systems in four spacetime dimen-

sions[135]. The developments of this infinite symmetry and its application in conformally

invariant systems and relation to two-dimensional CFT (CFT2) is initially stated in the seminal

work [136].

The Lie algebra bms4 is defined as the semi-direct sum of the Lie algebra of conformal

killing vectors of the Riemann(celestial) sphere corresponding to infinitesimal local conformal

transformations with supertranslation generators on the Riemann sphere [133]. Barnich et.

al. provided the detailed derivation of the generalization of bms4 algebra21 along with proof

21and bms3. In three spacetime dimensions, the asymptotic symmetry group is BMS3, where the diffeomor-
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1.4. Techniques to Find Asymptotic Symmetries

that the asymptotic symmetry algebra in four dimensions is represented by spacetime vectors,

which can be generalized to the extended algebra via conformal rescaling of the boundary

metric [134]. The surface charges associated with asymptotic symmetries in 4D flat spacetimes

at null infinity and their transformation properties are constructed. The divergence and non-

divergence of the supertranslation and superrotation charges in the case of the Kerr black hole

have been studied [13].

Supersymmetric Extended BMS (SUSY-e-BMS)

BMS is a bosonic asymptotic symmetry transformation. However, one can be curious about the

supersymmetric extension of this symmetry group in supersymmetric gauge and gravity theory

[137–139]. In this scenario, the entire BMS analysis can be done for the fermionic theories,

where we have the super-Lorentz generators as functions of the angular coordinates on the

sphere. The symmetry group will be the supersymmetric version of extended BMS symmetry

transformation, which we can call SUSY-e-BMS.

In part of this thesis work, I will dedicate a chapter towards understanding this as an appli-

cation of Celestial Holography followed by some recent developments by Taylor et al.[7].

1.4 Techniques to Find Asymptotic Symmetries

This small review intends to highlight some of the techniques used in the literature to com-

pute the symmetries of asymptotically flat spacetimes. These are some generalized techniques

specific to spacetimes with asymptotic boundaries.

1.4.1 Covariant Phase Space (CPS) formalism

The study of asymptotic symmetries in gauge and gravity theories leads us to find the asymp-

totic surface charges at the boundary of the spacetimes. One of the traditional techniques was

developed by Wald and Zoupos [140] in the context of Covariant Phase Space (CPS) con-

structions and defining the surface change using the symplectic structure. This study is most

important in the case of radiative asymptotically flat spacetimes. Using this prescription, we

construct the complete charge algebra, which contains all the information on the gravitational

radiation flux at the null boundaries of the spacetimes. This is a generalization of phase space

in classical mechanics to classical covariant field theories.

Our literature on asymptotic symmetries computation is rich in using this language. Al-

phism on the circle will be an infinite-dimensional extension of the Lorentz group.
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Chapter 1. Introduction

though we have not used this formalism in this thesis work, I want to give a brief review of

the methodology below for the readers to get a feel of this years-old formalism. For in-depth

knowledge about formalism, one can find the appropriate references herein.

Methodology:

• In the asymptotics, conserved surface charges imply symmetry constraints. We must

construct the physical phase space Γ by imposing certain gauge conditions.

Let us consider an asymptotic field as gravitational radiation information in terms of the

field CAB, and the charge corresponding to the infinitesimal supertranslation symmetry

given by Q f in section 1.3.1, where f (z, z̄) being the parametrized function on the celes-

tial sphere. Using the Dirac bracket prescription as an example, we have

δCAB = {Q f ,CAB}.

Similarly, we can have all the relations for all possible gravitational radiation data and

possible symmetries at the null boundaries of 4D Asymptotically flat Minkowski space-

times [141].

• Symplectic form and charges: Let’s consider the linearised fluctuation around a static

background, gµν : δgµν = hµν , which solves the linearised vacuum Einstein’s equation.

This, in other words, means that the variations are tangent to the phase space of solutions.

Now, we can define the pre-symplectic form22 corresponding to two on-shell field varia-

tions (h1,h2) as the integral over the pre-symplectic current density one-form, J(h1,h2)

on a Cauchy hypersurface Σ, which solves d ∗ J = 0. Hence,

ω(h1,h2) =
∫

Σ

∗J(h1,h2). (1.34)

Suppose we have diffeomorphism ξ , which acts non-trivially on the phase space. With

proper choice of gauge conditions and constraints, we can make ω invertible, which fixes

to give the symplectic form Φ(hξ

1 ,h2). The conserved surface charge associated with this

symmetry is given by the symplectic form as follows,

Qξ

∂Σ
≡ Φ(hξ

1 ,h2) =− 1
16π

∫
∂Σ

∗F (1.35)

22This is well explained by Wald in his work of local constraints and symmetries:[142].
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1.4. Techniques to Find Asymptotic Symmetries

Where F is the gravitational field strength two-form such that ∗J = 1
16π

d ∗ F [141].

This charge infinitely generates the symmetry acting on the phase space using the Dirac

bracket prescription:

{Qξ ,h(u,z, z̄)}= δξ h(u,z, z̄) = hξ (u,z, z̄). (1.36)

Hence, to have a suitable asymptotic theory, we need to construct the phase space with

the given symplectic pair (Qξ ,δξ gµν) at the boundary of the manifold.

I request the interested reader to look for this great thesis review by Adrien Fiorucci [143]

for more details on this CPS formalism in case of spacetimes with non-trivial background

curvature.

1.4.2 Hamiltonian Formulation

Another important technique in this direction is the Hamiltonian formulation of classical field

theories for finding asymptotic symmetries [144–150]. Henneaux and Troessaert uncovered

and simplified the asymptotic symmetry analysis at the spatial infinities [151–153]. Later,

these techniques were used in constructing the phase space at null infinities [154–157].

The advantage of this technique over other techniques is that it helps in deriving asymptotic

symmetries from the first principle. This requires a well-defined asymptotic phase space, a

symplectic phase space, a symplectic form defined on this phase space, a Hamiltonian, and an

action of the Global symmetry group on the defined phase space. Here is a brief summary of

the methodology used for symmetry analysis.

Methodology:

• Gauge transformations are symmetry transformations that involve arbitrary functions of

spacetime points. These transformations put constraints on the spacetime described by

Dirac Constraints [158]. The symmetry generators corresponding to this symmetry are

functions of the gauge parameter and the constraints, along with surface terms represent-

ing the local transformations on the sphere at the spacetime boundary.

• Asymptotic symmetries are canonical gauge transformations that preserve the boundary

conditions, and this infinitesimal gauge transformation is a Hamiltonian vector field that

has a canonical generator. This implies it preserves the symplectic structure [159–161].
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• The Dirac brackets between two canonical asymptotic generators generate another asymp-

totic symmetry transformation at the boundary, which depends on the boundary surface

term. If this surface term vanishes, we call those transformations trivial/small/proper

gauge transformations. If not, we have the non-trivial/large/improper gauge transforma-

tions. So small gauge transformations form an ideal of the asymptotic symmetry algebra

for all of the asymptotic symmetries.

• We know that physical states are trivial representations of the Poincaré group. In the

asymptotics, the generators of the improper/large gauge transformations are the true

physical observables.

Literature in Asymptotic symmetries is primarily based on this formalism; this technique is

tedious. However, recently, some developments in flat space holography have helped us un-

derstand this more simply. In the next section, I will briefly introduce this new Celestial

holographic technique and request the readers to follow the next chapter 2 of this work for

a complete review of the technique.

1.4.3 Holographic Techniques

A simple yet deeply mystical concept of our Universe as a Hologram!

Bekenstein and Hawking’s formula [162, 163] for black hole entropy hints towards the holo-

graphic universe. This formula signifies that all the information (quantum nature) of a black

hole is encoded using the holographic correspondence at the boundary, which is the event hori-

zon of the black hole.

The holographic principle is a concept proposed by Gerard ’t Hooft and later by Leonard

Susskind and Juan Maldacena, who played a pivotal role in the development of the principle.

The most sophisticated description of the holographic principle [164–166] is in the case of AdS

spacetime [167] and later for our type spacetimes with positive cosmological constants [168,

169]. Considering the success of AdS/CFT correspondence [166, 167], scientists are motivated

towards flat space holography, which is to apply this correspondence for quantum gravity in

asymptotically flat spacetimes [170–175].

To understand the nature of quantum gravity in flat spacetimes, we need the language of

Conformal Field Theory (CFT), where the asymptotic symmetries put constraints on the dual

CFT sitting at the conformal boundary (denoted by I±, i0,and i±) of the flat spacetime. This
24
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I+

I−

Figure 1.2: Projected null boundaries, I± of Mink4 on the boundary CS2.

holographic projection of our Mink4 on the boundary sphere is shown in Fig.1.2.

Modernization of Flat Space Holography:

Here, I will list two of the most recent modern-day techniques used in the context of flat space

holography.

• Celestial Holography (CH):

4D bulk of Mink4 −→ 2D sector of the Sky!

As the name suggests, this is related to the holographic projection of our 4D Mink4 on

the 2D sector of the boundary spacetime R×S2 or the sky. Hence, the name ‘celestial’

signifies the studies on the 2D sphere of the boundary called the celestial sphere23 (which

we denote by CS2). Starting from BMS [5, 8, 9, 176] on studies of asymptotic symme-

tries and Barnich and Troessaert’s BMS/CFT [134], it is well known that the symmetry

group of AFS is not Poincarè rather an infinite-dimensional enhancement of this. The

later realization of Andrew Strominger related to the antipodal matching between the

past and future null infinities helps us solve the gravitational scattering problems [15].

The celestial holographic principle [2, 11, 177–181] holds the idea of mapping the in

coming and out going particles in the scattering to the conformal operators (O±
∆i
(zi, z̄i)) at

the boundary S2. Here, the momentum pi of the incoming/outgoing particle is interpreted

in terms of the conformal dimension ∆, and the momentum direction depends on the

point of insertions (z, z̄) on the sphere. This implies mapping the wave functions in the

bulk 4D Mink4 to the boundary conformal primary wave functions. All this now implies

the exact map of the scattering amplitudes to the conformal field correlators on our 2D

23The celestial sphere is the Riemann sphere on the boundary of the Minkowski space.
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CS2. Generically, the map can be defined for a D+2 dimensional flat spacetime to a D

dimensional celestial CFT (CCFT)24 living on the SD.

The collinear limit of amplitude turns into an operator product expansion (OPE) of con-

formal operators of the Celestial Conformal Field theory (CCFT) [182–185] as identical

momentum directions correspond to the same operator insertion points on CS2. An in-

teresting fact is that the soft and collinear limits of scattering amplitudes can be used to

read off the asymptotic symmetries in the context of CCFT [184, 186]. It turns out that to

calculate the asymptotic symmetries of a theory, we need to probe the universal soft and

collinear sectors of the scattering amplitudes. This has been used to reproduce the BMS

algebra in [186] and [187] for pure gravity and large gauge algebra for Einstein Yang-

Mills theory [188]. Recently, it has also been used to compute the N = 1 supersymmetric

extension of the BMS algebra [7].

In this thesis, I will be specific to this technique in particular to find the asymptotic

symmetries. Readers can look for Chapter 2 for more details.

• Carrollian Holography (CarrH):

4D bulk of Mink4 −→ Full 3D Sky!

Contradicting the expectations of flat space holography to be a co-dimension one holog-

raphy, CH proposes a co-dimension two holography for flat Mink4. To address this with

exact holography like in AdS/CFT, recent literature proposed another well-known per-

spective called Carrollian Holography (CarrH) [189–192]. One can call this to be a

modified version of Celestial Holography25.

This implies gravity in D+ 2 dimensional asymptotically flat spacetimes is dual to the

Carrollian CFT (CarrCFT) in D+1 dimension sitting on the null boundary of the AFSs26.

It is started from isomorphism at the algebraic level between the asymptotic symmetries

of the flat spacetimes (BMS) in D+ 2 dimension (BMSD+2) and non-Lorentzian CFT,

the conformal Carrollian algebra in D+1 dimension (CCarr(D+1)) [59, 196–198]. Initial

24In CCFT, one describes the four-dimensional physics in terms of the conformal correlators of two-dimensional
CFT on the celestial sphere living at the null infinities of the Minkowski flat spacetime. The map from amplitudes
in bulk to conformal correlators on the boundary is the Mellin transform.

25Modified as to represent the modified Mellin transformation explained in literature [193–195].
26Carrollian limit (ultra-relativistic limit) boosts a time-like boundary to a null boundary, and this maps the

D+1 dimensional conformal Carroll algebra to D+2 dimensional Lorentz subalgebra of bulk MinkD+2 [196].
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works in this direction have been done in this direction for 3D flat spacetimes [197–205],

then some recent development is in 4D to recover BMS4 from CCarr3 [190–195, 206].

Amongst all the advantages, one important consideration is given here [189] in the case

of AdS spacetime to recover the flat space results in the singular limit (Flat space limit,

AdS length → 0). The recent constructions for computing certain Witten diagrams in

terms of Carroll conformal correlation functions on the boundary help us develop an

understanding of ‘scattering’ in AdS spacetimes.

I will highlight more on this in Chapter 6.

1.5 Relating Gauge and Gravity Theory

What gauge theory brings to gravity scattering amplitudes?

Recent investigations into gravity and gauge theory amplitudes have resulted in non-trivial re-

lationships between the two [207]. Gravity tree-level amplitudes can be expressed in terms

of sums of products of gauge theory tree-level amplitudes. This can be described by different

double copy formalisms [208–211]. The relevant double copy formalism reviewed in [212] was

originally formulated as a relation between open and closed string amplitudes [208]. The corre-

sponding relation in the low energy effective theory gives a relation between gauge theory and

gravity amplitudes. Thus, one can explicitly calculate soft and collinear limits of amplitudes in

gravity using the corresponding results of gauge theory.

1.5.1 Double Copy : A Brief Review

Let us briefly review the double copy (DC) technique, which plays a crucial role in our analysis.

It is a multiplicative bilinear operation to compute the amplitudes in one theory using ampli-

tudes from other simpler theories. This is a method to express gravity tree-level amplitudes in

terms of sums of products of gauge theory tree-level amplitudes [209, 213]. Schematically,

M(Gauge)×M(Gauge) ∼M(Gravity) (1.37)

There are three different double copy formalisms for tree-level amplitudes: KLT (named after

Kawai, Lewellen, and Tye) [208], BCJ (named after Bern, Carrasco, and Johansson) [209]

and CHY (named after Cachazo, He, and Yuan) [210, 211] formalism. We refer to [212] for

a detailed review of these formalisms. Here, we restrict our discussion to the application of
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double copy to soft and collinear limits of gravity amplitudes in terms of soft and collinear

limits of gauge theory amplitudes. This means to take the soft and collinear limits of both sides

of Eq.(1.37).

This formalism has been mostly explored in different theories. However, I will be focused

here on the case of supersymmetric theories. Hence, we ask if it is possible to relate the soft

and collinear limits specifically in N = 4 SYM to soft and collinear limits in N = 8 super-

gravity. Indeed this can be done [214–217]. This study is motivated towards understanding

the amplitudes of supergravity theory in detail. N = 4 supersymmetric Yang-Mills and N = 8

supergravity are maximally supersymmetric theories and are rich in symmetries. Due to enor-

mous symmetries, one can compute higher and higher loop amplitudes and show that they are

finite [105]. In fact people argue that these are one of the simplest quantum field theories [106].

One can then study the soft and collinear limits of amplitudes in these theories to learn more

about the symmetries. The study of soft and collinear limits in N = 4 SYM has already been

done [218–220] and the corresponding CCFT was studied in [221].

Double Copy and Soft Limit:

Similarly, one can take the soft limit of the double copy relation to relate the soft factors in

gravity and gauge theories. Let us start with the universal soft behavior of the tree level n-

gluon amplitude. The soft factor when the i-th particle is taken to be soft, for either helicity, is

given by,

Atree
n
(
. . . ,a,εi±,b, . . .

) ε→0−→

(
1
ε2S

(0)
Gauge(i,a,b)+

1
ε
S(1)

Gauge(i,a,b)+O (1)

)
×Atree

n−1(. . . ,a,b, . . .)

(1.38)

Here, the soft limit is parameterized by a factor ε → 0, as described in the last section. The

factors S(0)
Gauge and S(1)

Gauge contains the soft divergences to leading and subleading order in the

gauge theory. Similarly, the gravity amplitude also has this universal soft behavior with i-th

particle going soft and is given by,

Mtree
n
(
. . . ,a,εi±,b, . . .

) ε→0−→

(
1
ε3S

(0)
Gravity(i,a,b)+

1
ε2S

(1)
Gravity(i,a,b)

+
1
ε
S(2)

Gravity(i,a,b)+O (1)

)
Mtree

n−1(. . . ,a,b, . . .)

(1.39)
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where S(0)
Gravity, S(1)

Gravity and S(2)
Gravity are leading, subleading and subsubleading soft factors in

the gravity theory. Double copy relates these soft factors as follows [113, 209]

1
ε3S

(0)
Gravity(s,n,1)+

1
ε2S

(1)
Gravity(s,n,1)+

1
ε
S(2)

Gravity(s,n,1)

=
n

∑
j=1

K2
s j

(
1
ε2S

(0)
Gauge( j,s,n)+

1
2ε

S(1)
Gauge( j,s,n)

)2 (1.40)

where K2
s j = ε⟨s j⟩[s j].

Double Copy and Collinear Limit:

The KLT double copy was originally discovered in string theory as a relation between open

and closed string amplitudes. Once the large string tension limit (also called the field theory

limit) is taken, the KLT relation turns into a relation between gravity and gauge theory tree

level amplitudes [216]. The general KLT relation for a general gravity tree level amplitude

Mtree
n (1,2, . . . ,n) with n external legs (we have assumed n to be even below, but the odd case

can also be written in a similar way with appropriate modifications) with color-ordered27 gauge

theory tree level amplitude Atree
n (1,2, . . . ,n) is given by [216].

Mtree
n (1,2, . . . ,n) = i(−1)n+1Atree

n (1,2, . . . ,n)

× ∑
σ∈Sn/2−1
τ∈Sn/2−2

f (σ(1), . . . ,σ(n/2−1)) f̄ (τ(n/2+1), . . . ,τ(n−2))

×Atree
n (σ(1), . . . ,σ(n/2−1),1,n−1,τ(n/2+1), . . . ,τ(n−2),n)

+Permutations of (2, . . . ,n−2).

(1.41)

27Color-ordered or “color-stripped" amplitudes don’t depend on the gauge group indices. These partial ampli-
tudes are gauge invariant and depend on the kinematic invariants only. For instance, an N-gluon amplitude can be
written as [122],

M({pi,hi,ci}) = ∑
σ∈SN−1

2N/2 Tr{T c1T c2σ · · ·T cNσ }A(1h1 ,2h2σ
σ , · · · ,NhNσ

σ ).

Here, A(1h1 ,2h2σ
σ , · · · ,NhNσ

σ ) is our color-ordeed or partial amplitude. The sum is over the (N −1)! permutations
of σ .
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The functions f and f̄ are defined as

f
(
i1, . . . , i j

)
= s
(
1, i j
) j−1

∏
m=1

(
s(1, im)+

j

∑
k=m+1

g(im, ik)

)

f̄
(
l1, . . . , l j′

)
= s(l1,n−1)

j′

∏
m=2

(
s(lm,n−1)+

m−1

∑
k=1

g(lk, lm)

) (1.42)

where

g(i, j) =

s(i, j) := si j := ⟨i j⟩[ ji], i > j

0, otherwise.
(1.43)

Thus, every gravity state j on the LHS can be interpreted as the tensor product of the two gauge

theory state on the RHS.

One can take the collinear limit on both sides of the KLT relation (1.41) to obtain a relation

between the split factor for collinear states in gravity and the split factors in gauge theory. We

describe this relation below. The collinear limit in gravity is written as [217]

Mtree
n (1h1,2h2, . . . ,n)

1∥2−→ ∑
h=±

Split gravity
−h (z,1h1,2h2)×Mtree

n−1

(
Ph,3, . . . ,n

)
. (1.44)

Using the KLT relation, the gravity split factor can be related to the “square" of gauge split

factors as [216],

Split gravity
−(h+h̃)

(
z,1h1+h̃1,2h2+h̃2

)
=−s12 × Split gauge

−h

(
z,1h1,2h2

)
× Split gauge

−h̃

(
z,2h̃2,1h̃1

)
.

(1.45)

Here a state h+ h̃ in gravity theory is written as the product of states h, h̃ in the two gauge

theories and s12 = ⟨12⟩ [21].

For instance, N = 8 supergravity amplitude can be related to the amplitudes in N = 4 super

Yang-Mills in this way, and this leads to the relation,

N = 8 Supergravity ∼ (N = 4 Super Yang-Mills) ⊗ (N = 4 Super Yang-Mills).

Note that the doubling of supersymmetry in this double-copy relation can be understood by

counting the degrees of freedom on the two sides. Indeed, N = 8 supergravity has 256 states,

which is twice the 128 states in N = 4 SYM. We will explain the explicit factorization of states
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1.6. Flat space observer in AdS

for the case of N = 8 supergravity into N = 4 super Yang-Mills states in Chapter 5.

1.6 Flat space observer in AdS

Any physical information of a theory is encapsulated in its S-matrix, which gives us the scat-

tering amplitudes of an in-state in the far past to time evolve to an out-state in the far future.

S-matrix is a well-defined observable for quantum field theories in flat space-time. However,

for theories in AdS space-time, the S-matrix is not well-defined. Particles in the AdS space-

time behave like particles in a box as the null rays reflect back from the time-like boundary.

Hence, in the context of AdS, the definition of on-shell asymptotic states is ambiguous, and

we do not have any notion of an on-shell S-matrix. A complete theory of quantum gravity in

asymptotically AdS spacetime can be understood in terms of a Conformal Field Theory (CFT)

sitting at its boundary. This holographic duality, known in the literature as AdS/CFT corre-

spondence, was proposed by Maldacena in the year 1997 [166] and has been greatly applied

and explored by others since then [171, 222–231].

What does flat space limit of AdS spacetime signify?

There have been works on scattering amplitudes in AdS spacetime, which helps in understand-

ing the Infrared (IR) finite S-matrix in the flat space limit of AdS/CFT [171, 222, 225–227,

232]. This has various applications, including the S-Matrix bootstrap program [40–42, 230,

231]. In AdS, particles correspond to irreducible representations of the conformal group, al-

lowing for a connection between QFT in flat space and QFT in AdS. This connection is estab-

lished through the relationship that the S-matrices of flat space can be derived by taking the

dimension of the conformal field ∆ in the CFT correlator to be large when the dual AdS length

scale, denoted by R → ∞. This transition enables a comprehensive understanding of QFT in

AdS by utilizing insights from CFT correlation functions and their connection to the flat space

formulation28.

In literature, various works have suggested ways to compute the flat space S-matrix from

the position space conformal correlators [223, 224, 234]. In [223], authors showed that, for a

massive scalar field, in the flat space limit (R → ∞), the bulk-to-boundary propagator reduces

to the usual external leg factors for position space Feynman diagrams, and the bulk-to-bulk

propagator indeed reduced to Feynman propagators. Consequently, the correlation functions

28Hence AdS radius R serves as the infrared regulator for the flat spacetime [233].
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or Witten diagrams [228] also reduce to flat space correlation functions in the large R limit.

Interestingly, their approach is valid only in a small region of AdS space where the distances

are very small as compared to AdS radius R. This is a direct consequence of the large ∆ limit

manifesting itself as the large R limit.

A way to construct the on-shell momentum states in bulk is to use the HKLL prescription

[223, 224, 234, 235], and the momentum space prescription given by [236] agrees to this

analysis at leading order in large R. Another line of work in this direction is done by [50],

where the authors obtained the S-matrix of the flat space patch around the center of global

AdS from the CFT correlators in a large radius limit. The conformal operators constructed

create the asymptotically scattering states of the flat space patch. Here, they have also explored

the IR structure of the flat space scattering amplitudes that reproduce Weinberg’s soft photon

theorems29.

1.6.1 Soft motivations

However, the nature of “soft theorems" in the context of scattering amplitudes in theories in the

presence of a cosmological constant remains less explored. While these are better explained

within flat spacetimes [12, 43–46, 48, 55–57, 117–121, 237], their characterization becomes

less straightforward in the context of AdS. Soft theorems in terms of Ward identities of asymp-

totic symmetries constrain the physical observables like the scattering amplitudes [11, 12, 15,

47, 188, 238], which has experimental implications both in gauge and gravity theories [17–21].

The definition of soft theorems becomes challenging due to poorly defined asymptotic states

within AdS. Moreover, there is an issue while taking the soft limit in AdS30. In this context, an-

other interesting limit, namely the double scaling limit (DSL), has been introduced by Banerjee

et al. [239, 240]. This is defined as a limit when the frequency (ω) of the radiation and the

cosmological constant goes to zero (conversely, the AdS radius R approaches infinity), simulta-

neously keeping their ratio constant. This limit physically uses the fact that when the space-time

approaches to flat, these radiations become soft. This limit provides us the small cosmological

29In the context of a quantum scattering process within flat spacetime, taking soft limit implies taking the
momentum of one of the external particles to zero (kµ → 0). Soft theorems are the behavior of the scattering
amplitudes under this soft limit [12, 43, 45, 46, 118].

30For instance, the relation between mass m, energy ω , and conformal weight ∆ for a massive scalar field in
AdS is given by, m2R2 = ∆(∆−d) and ωR = ∆. Clearly, m = 0 has two distinct solutions, ∆ = 0 and ∆ = d. The
first one is consistent with the definition of soft limit (m,ω → 0). However, the second solution is inconsistent
with ω → 0 limit [239, 240]. For a finite AdS radius R, any QFT in AdS spacetime is IR regulated [232], which
means AdS allows us to probe energy scale only up to O(1/R). Hence, to establish the soft limit within the AdS
framework, enabling us to probe an extremely low-energy regime, we take the AdS radius to be large.
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constant corrections to the flat space Classical Soft theorems as described in [239, 240]. Fur-

ther in [241, 242], it has been shown that the small cosmological constant corrected soft photon

theorem can be derived from a large N CFT3 Ward identity. A perturbed soft photon mode

operator on a flat spacetime patch in global AdS4 has been derived in terms of an integrated

expression of the boundary CFT current.

1.7 Unifying Gravity at Infinities

The motivation to unify gravity at infinities comes from Strominger’s Infrared (IR) Triangle

[11]. So, this can be a single framework relating to the quantum and classical sectors of gravity

at the infinities far away from the source(s) that we are aiming for.

• The passage of a gravitational radiation pulse through a nearby detector induces a rel-

ative displacement in the detector position. This effect is measurable and is known as

gravitational memory effect31[18, 243, 244].

• On the other hand, due to the passage of this gravitational radiation, the difference in the

initial and final geometries of the spacetime is related by a BMS supertranslation as ex-

plained in section 1.3.1. This means that the Ward identities of this BMS supertranslation

symmetry invariance in quantum gravity are expressed as data representing gravitational

radiation at the null infinity [15].

• Gravitational scattering amplitudes involving one or multiple soft graviton currents are

given by Weinberg’s soft graviton theorem, and the BMS supertranslaion Ward identity

can be reproduced from this soft theorem [12].

This is how the infrared triangle is formed. However, quite independently, the relation between

Memory and soft theorems has been established by Strominger et. al. [11, 132]. Memory

effect is the Fourier transformation of the soft theorems, which is the Ward identity of the su-

pertranslation symmetry. I have shown this vacuum transition by the action of supertranslation

symmetry32 in section 1.3.1. The radiations coming out of spacetimes cause this transition

from one vacuum state to another.

In the above sections, I explained the symmetries and corresponding charges.

31The relation between memory and asymptotic symmetries is given by a universal formula which also has been
extended for gauge theories [21].

32In electrodynamics, we have electromagnetic memory [20, 21] in terms of electromagnetic radiation coming
out from the null hypersurfaces.
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Hence, one can address this as

Localised charges at null infinities are interpreted as Memory effects!

This relates to two stationary regions of the spacetimes (two equivalent vacua), which is a DC

shift of the outgoing metric, which can be sourced from any binary collisions, as shown by

Branginsky and Throne [245].

1.7.1 Implications in GW Astronomy

Gravitational waveforms unfold the secrets to symmetries at the null infinities of the boundaries

of our asymptotically flat spacetimes. I am focused here on the application of asymptotic

symmetries in the sector of gravitational wave observation. I will highlight here some of the

recent literature’s research highlights for the reader.

...in the Infrared limit, BMS formalism associated with the asymptotic symmetries of flat

Mink4 and e-BMS group is an exact solution of the gravitational field in the far-zone regime. To

solve a binary problem, we need to consider the energy and angular momentum fluxes radiated

by the binary. In this regard, the BMS flux balance law [246–254] is the time evolution of

the BMS charges, constrained by Einstein’s field equations. The multipole expansion of this

BMS flux balance law gives us the radiative multipole moments for radiation-reaction forces

of compact objects [254].

In the week field regime, the post-Newtonian (PN) and post-Minkowskian (PM) formalism

[255–264] or Effective Field theory approaches [88, 265–272] relates this radiative mode to

the observables of the binary sources. However, one needs to change the parameter space to

compare and extract the desired results33. In consequence of this flux balance law, we have the

observable memory effects34, which are the detectable classical observables [280–283] in ad-

vanced ground-based detectors like LIGO, VIRGO, and KAGRA (LVK)-type detectors [284–

291] and space-based gravitational wave detectors like LISA [292]. Some other methodologies

for computing the classical observables and producing precision gravity results are quantum

scattering amplitude techniques [266, 267, 293], and worldline quantum field theortic tech-

niques [294–297]

In these Gravitational wave observations, interpreting the signal in terms of the wave mem-

33This needs a coordinate change from Bondi gauge to de Donder gauge, as the desired results of the canonical
multipole moments are defined in de Donder gauge [243, 254, 273–276].

34Displacement memory, spin memory, and Center-of-mass memory effects [18, 138, 244, 277–279].
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ory implies strong evidence of the symmetry constraints in gravity theories. The BMS sym-

metries help to provide insights into the final stages of binary mergers and properties of the

remnants from the merger.

Words from Numerical Relativists

Understanding asymptotic symmetries using numerical relativity techniques is more highlighted

these days, considering the advantages coming from Gravitational Wave astronomy for solving

the non-linearities of Einstein’s field equation in the strong field regime. There have been many

recent developments in this direction [298–306]. Numerical relativists extract this waveform

from the simulations at a finite distance from the sources and then extrapolate the data up to

null infinities to understand the structure of the asymptotics.

It is challenging for relativists to achieve the necessary precession in numerical simulations

to study asymptotic symmetries due to the need for accurate large-distance simulations. As a

toolkit, numerical relativity deepens our theoretical understanding of the properties of space-

times and the nature of gravitational phenomena.

In a full non-linear theory, the local flux of radiations cannot be defined at finite distances

from the source. Hence, we must consider the linearised perturbations around a gauge-invariant

blackhole background [307–311], similar to the small deviations from the flat spacetimes. Per-

turbations around AFSs are similar to fluctuations in the Schwarzschild background at a large

distance, and this serves the purpose. This perturbative technique is an effective tool to extract

the physics of the gravitational waves generated in a numerically evolved Asymptotically Flat

Spacetimes [312–314].

We aim to explore the potential application of flat space holographic techniques in the clas-

sical world of gravitational wave astronomy, offering insights into the detection and analysis of

these cosmic ripples in our universe.

1.7.2 State-of-the-Arts In Black Hole Physics

Can I apply flat space holographic techniques to Black Holes?

Of course! The recent field of black hole physics has seen significant advancements in

the context of holography. Its relation to string theory and quantum gravity has been vastly

explored. The idea of the holographic principle to study bulk physics in terms of boundary

information helps physicists to understand the black hole information problem, originally for-

mulated by Stephen Hawking [162, 315]. This duality provides a powerful framework for
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studying the thermodynamics and entropy of black holes. Using techniques from holography,

like replica wormholes and island formulas, researchers hope to understand the properties of

Hawking radiations, which incorporates the long-standing open problem in black hole thermo-

dynamics [316–318].

Understanding the entanglement entropy in a conformal field theory of a boundary region

to the area of a minimal surface in the bulk AdS space using the well-known Ryu-Takayanagi

formula has been an instrumental direction of research [319–321]. Some of the recent excite-

ments are in the direction of complexity in the context of black holes. Holography duality

proposed that the complexity of quantum states in the boundary theory of the manifold is

related to the bulk geometry of the AdS spacetime. This includes complexity∼volume and

complexity∼action conjectures [322–325].

String theory and holographic methods provided methods for counting microstates of the

black holes, especially in the context of supersymmetric black holes. This relates to the

Bekenstein-Hawking entropy and entropy of the black holes in the area of the horizons [326,

327]. Sen developed the quantum entropy function formalism to compute the entropy of ex-

tremal black holes in string theory using the AdS/CFT correspondence [328]. These tech-

niques help us to understand the quantum structure of black holes, and as per the suggestions

coming from string theory, our information inside the black hole is never lost, though it is en-

coded in these microstates. Our understanding of recently developed techniques for celestial

holography is to make sense of these developments related to microstate counting in the case

of supersymmetric black holes.

Towards Blackhole horizon symmetries

It all started with Brown and Henneaux’s understanding of the Virasoro symmetries of the

near horizon geometry of the extremal black holes, which are to understand the microstates

and entropy of at the killing horizons in relation to the states in [329]. There are some other

works to relate these symmetries to the states in conformal field theory [329–332]. Recently,

Hawking, Perry, and Strominger, in [141, 333], caught the attention of scientists on solving the

black hole information paradox using asymptotic symmetries. In the presence of a black hole,

we have two asymptotic observers, one sitting at the asymptotics far away from the black hole

and another on/near the horizon. This questions the symmetry groups and whether we have the

complete BMS group at the horizon or not. Finding the asymptotic isometry generators on the

horizon is a real challenge in the presence of any blackholes. Soft charge conservation builds
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correlations of the in/out states at the black hole horizons.

We must understand the BMS symmetries and their connection to black hole geometry.

As an asymptotic observer and an observer outside the event horizon of a black hole, one

must compute the gravitational memory effects and their properties produced by any incom-

ing shockwave. This memory is called the black hole memory effect [334, 335]. Recent

state-of-the-art is to foliate the event horizon in the early and late times, which are related

by Chandrasekaran-Flanagan-Prabhu (CFP) supertranslation symmetries [336].

One of the primary motivations for this thesis is to ignite the reader’s curiosity about flat

space holography and its power to unravel the symmetries of the spacetimes and their quantized

modes at the boundary of the spacetimes.

1.8 Plan of Thesis

I will organize the thesis as follows.

• In the preliminary Chapter 2, I will review the basics of the celestial conformal field the-

ory technique that we use in celestial holography to understand the scattering in asymp-

totically flat spacetimes, as this will be heavily used in the succeeding chapters in the

thesis. As an example, I will use the pure Yang-Mills theory and show the celestial map

explicitly with the construction of possible OPEs between the symmetry current genera-

tors on the celestial operators.

• In Chapter 3, we will use the above CCFT techniques in the theory where we have non-

trivial u(N) gauge symmetries like in Einstein Yang-Mills theory, where we reduced it to

the special case of Einstein-Maxwell’s theory in the presence of u(1) gauge symmetry.

We will address some of the properties of the theory in constructing the symmetry algebra

at the infinities of our AFSs.

• In Chapter 4, the motivation is a bit accidental. The initial motivation was to understand

and apply the celestial holographic technique in the case of maximally supersymmetric

N = 8 supergravity theory (which will be my Chapter 5). However, as we know, we

have the mandatory requirement of soft and collinear sectors of the scattering amplitude

in any theory for using this CCFT technique. This leads us to this work of finding the

soft and collinear limits of every possible interaction vertices of the scattering in super-

gravity using the amplitudes of the N = 4 super Yang-Mills (SYM) using double copy

formalism.
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• As explained above, in Chapter 5, I will introduce the celestial superamplitude computa-

tion of N = 8 supergravity theory, which is expected to get mapped to the celestial quasi

on-shell superfield conformal correlator at the boundary sphere at the null infinities. The

construction goes the same as the technique explained in Chapter 2 and 3. Our goal

here is to look for the possible symmetry extensions at the asymptotic boundary corre-

sponding to the bulk supersymmetry and the SU(8)R symmetry. This asymptotic analysis

and the extended BMS symmetry current modes (if any) in supergravity underscores our

understanding of supersymmetric black holes and the symmetries on or near the horizon.

• In chapter 6, I will explain part of our recent work in understanding scattering amplitudes

in AdS spacetime in the flat space limit (large AdS length). This work is one of the ways

to understand the soft particles in the AdS spacetime. The analysis is done, especially

in the presence of vector bosons. We used momentum space formalism to compute the

propagators in the embedding space, which in the flat space limit was reduced to the

Feynman propagators of the flat spacetime. We are motivated to study an effective model

to gain a detailed understanding of the formalism used here.

Publications as part of this Thesis:

1. N. Banerjee, T. Rahnuma and R. K. Singh, “Asymptotic symmetry of four-dimensional

Einstein-Yang-Mills and Einstein-Maxwell theory,” JHEP 01 (2022), 033.

2. N. Banerjee, T. Rahnuma and R. K. Singh, “Soft and collinear limits in N = 8 super-

gravity using double copy formalism,”JHEP 04 (2023), 126.

3. N. Banerjee, T. Rahnuma and R. K. Singh, “Asymptotic symmetry algebra of N = 8

supergravity,” Phys. Rev. D 109 (2024).

4. N. Banerjee, A. Desai, A. Mitra, K. Fernandes, and T. Rahnuma, work in progress.
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CHAPTER 2

PRELIMINARIES ON CELESTIAL HOLOGRAPHIC TECHNIQUES

2.1 Introduction

The gravitational dynamics in flat spacetime can be understood through holography, a concept

pioneered by Juan Maldacena within the context of AdS/CFT correspondence in 1996. The

recent uncovering of the relation between the on-shell physics of asymptotically flat theories

and 2D CFT has proved to be a powerful tool in the computation of BMS algebra.

Asymptotic symmetry analysis via killing vectors is often tedious and challenging. So

far, this prescription has only been used to obtain the asymptotic symmetry groups of pure

gravity theory. In three spacetime dimensions, the alternative Chern-Simons formulation of

(super)gravity1 has turned out to be the most useful tool for obtaining the asymptotic symmet-

ric algebra. However, for the four spacetime dimensions that we are currently interested in,

gravity does not have a Chern-Simons formulation. Thus, an alternate method for computing

the asymptotic symmetry algebra for a theory of gravity in four dimensions is desirable so that

the enhanced symmetry group in the presence of supersymmetry and other internal symmetries

can be obtained.

Soft and Collinear limits have played an important role in flat space holography [122, 185].

The collinear limit of amplitude turns into an operator product expansion (OPE) of conformal

operators of the celestial conformal field theory (CCFT) on the celestial sphere on the boundary

[61, 182, 183, 185, 344, 345]. These OPEs can be used to calculate the non-trivial asymptotic

symmetries of the theory. The usual method of calculating asymptotic symmetries is by finding

conformal Killing vectors and spinors that become intractable in the presence of other fields in

the theory. That is where CCFT becomes important. A recent proposal by Taylor et al. asserts

that one can calculate the asymptotic symmetries of gravity theories using soft and collinear

limits of amplitude in the framework of CCFT. This has been confirmed to give consistent

results in the few cases it has been implemented [7, 186, 188]. Hence, the study of soft and

collinear limits in gravity theories is important in the context of celestial holography.

1asymptotic symmetries for various three dimensional supergravity theories can be found in [139, 337–342]
and for higher spin-gravity can be found in [198, 200, 343].
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Figure 2.1: Illustration of Celestial Holography. The celestial sphere (CS2) in RHS is a two-
dimensional boundary at the null infinity or I± of the causal diamond. Points on this sphere
correspond to the directions from which light or other massless particles approach or leave the
spacetime.

2.2 Celestial Holography

This alternative to flat space holography relates on-shell physics in asymptotically flat theo-

ries to a 2D Celestial CFT. It maps four-dimensional spacetime symmetries to CS2 (Fig.2.1).

Scattering amplitudes transform into CCFT conformal correlators, yielding BMS generators.

Infinite asymptotic symmetries impose constraints on celestial amplitudes through Ward iden-

tities, resulting in infinite soft theorems2. Recent proposals suggest that these symmetries rely

on suitable OPEs, connecting bulk and boundary physics, thus developing the holographic prin-

ciple in flat spacetime. Let us briefly discuss the relation here:

• It is a well-known fact that the bulk symmetry SL(2,C) of an asymptotically flat four-

dimensional theory is identical to the global part of a two-dimensional Conformal Field

Theory (CFT). Given fields in the bulk of an asymptotically flat theory, one can associate

conformal operators with these fields that live on the two-dimensional sphere, namely

the celestial sphere denoted by CS2 sitting at the null boundaries of the spacetime.

• The boundary physics is captured by a 2D CFT known as celestial CFT (CCFT) of these

operators on CS2. In this celestial approach, the non-trivial symmetries and their algebra

of the bulk theory can be computed using the 2D conformal invariance of the CCFT

correlators. In particular, the four-dimensional scattering amplitudes of the bulk theory

are related via Mellin transformation to the conformal correlators of the CCFT operators.

2We have an infinite-dimensional w-symmetry group [346–348]corresonding to the higher spin 2D celestial
currents, forming an infinite tower of conformally soft graviton/gluon symmetries [349, 350].
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2.3. Celestial Map

Such CCFT correlators that are associated with bulk scattering amplitudes are called

celestial amplitudes.

2.3 Celestial Map

By now, it is a well-known fact that the scattering amplitudes of a four-dimensional theory in

Minkowski spacetime can be cast into appropriate quantities on the celestial sphere via certain

mappings of the momenta and amplitudes [179, 181, 344, 351]. The four-dimensional Lorentz

group SL(2,C) is equivalent to the global part of two-dimensional conformal groups and acts

on points of the celestial sphere CS2 via fractional linear transformation. To elaborate on this

connection, for four-dimensional spacetime, we use Bondi-Sachs coordinates (u,r,z, z̄) where

(z, z̄) parametrize the celestial sphere at null infinity. Then SL(2,C) acts on CS2 as follows:

(z, z̄) 7−→
(

az+b
cz+d

,
āz̄+ b̄
c̄z̄+ d̄

)
,


a b

c d

 ∈ SL(2,C).

A general null momentum vector pµ : p2 = 0 can be parametrized as

pµ = ωqµ , qµ =
1
2
(
1+ |z|2,z+ z̄,−i(z− z̄),1−|z|2

)
,

where qµ is a null vector, and ω is identified with the light cone energy. Under the Lorentz

group, the four-momentum transforms as a Lorentz vector pµ 7→ Λ
µ

ν pν . This induces the

following transformation of ω and qµ :

ω 7→ (cz+d)(c̄z̄+ d̄)ω, qµ 7→ q′µ = (cz+d)−1(c̄z̄+ d̄)−1
Λ

µ

νqν .

It is useful to introduce the bispinor notation at this stage. We denote the left and right handed

helicity spinors by λα and λ̃ α̇ respectively. A given null momentum pµ can be written as a

bispinor

pαα̇ = σ
αα̇
µ pµ =


p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

= λ
α

λ̃
α̇ (2.1)
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where σαα̇
µ = (1,σx,σy,σz) are the Pauli matrices. For real physical momentum, the two

spinors are related by complex conjugation (λ̃ α̇)∗ = λα .

We can thus introduce the familiar angle and square bracket spinor notation (see section

1.2.4 for a brief review of spinor-helicity formalism) for the left and right-handed momentum

spinors:

λ
α ≡ ⟨p|α =

√
ω


1

z

=
√

ω⟨q|α , λ̃
α̇ ≡ |p]α̇ =

√
ω


1

z̄

=
√

ω|q]α̇ , (2.2)

where we write

⟨q|α =


1

z

 , |q]α̇ =


1

z̄

 . (2.3)

To shorten the notation, we denote the spinors for momenta pi by ⟨i|α and |i]α̇ respectively.

The inner product of momenta pi and p j can then be written in terms of the angle and square

brackets of the corresponding spinors, which are now given by

⟨i j⟩=−√
ωiω jzi j, [i j] =

√
ωiω j z̄i j. (2.4)

where zi j = zi − z j and similarly z̄i j = z̄i − z̄ j. Here, i, j are labels associated with the particles.

Mellin Transformations:

The wave functions in the four-dimensional Minkowski space are mapped to particular

operators on the celestial sphere via Mellin transforms. They are also called conformal primary

wavefunctions, and the Mellin transformation of the momentum space scattering amplitudes

are called celestial amplitudes relating the bulk and boundary of our AFSs. These amplitudes

are basically the correlation functions in the CCFT.

It’s a map between the plane wave basis of the momentum space formulation and the con-

formal basis. In our case, we have the massless scattering processes, and the wave functions

transform as conformal primaries under the Lorentz group. This is done as follows:
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For any function f (ω), the Mellin transform is defined as,

ϕ(∆) =
∫

∞

0
dω ω

∆−1 f (ω). (2.5)

∆ could be the “conformal dimension" of the conformal primary wavefunctions correspond-

ing to gauge bosons and graviton. It belongs to the principal continuous series of irreducible

unitary SO(1,3) representation [351], ∆ ∈ 1+ iR. This is a demand we have to make to de-

fine normalizable wave packets. One can further define the inner product of these conformal

wavepackets [7]. These conformal dimensions are the Mellin-dual to the energies.

We can now use Mellin integration to transform the fields in bulk to get conformal primaries

on CS2. The spin-0 massless conformal primary of conformal dimension ∆ is given by [179,

184, 351]

ϕ
±
∆
(X µ ,z, z̄) =

∫
∞

0
dωω

∆−1e±iωq·X−εω =
(∓i)∆Γ(∆)

(−q ·X ∓ iε)∆
, ε > 0. (2.6)

The iε prescription added here is to make the Mellin integral convergent [184]. Similarly, the

plane wave packets corresponding to gauge boson and graviton are given as [185, 186, 352],

ε
ℓ
µ(p)e∓i|p0|X0±ip⃗·X⃗ and ε

ℓ
µν(p)e∓i|p0|X0±ip⃗·X⃗ (2.7)

respectively where ℓ is the helicity and εℓµ and εℓµν represents the polarisations of the spin-1 and

spin-2 particles respectively. Again for spinning particles, we have on CS2 :

V ∆,ℓ
µ (X µ ,z, z̄)≡ ∂Jqµ

∫
∞

0
dω ω

∆−1e∓iωq·X−εω (ℓ=±1)

H∆,ℓ
µν (X µ ,z, z̄)≡ ∂Jqµ ∂Jqν

∫
∞

0
dω ω

∆−1e∓iωq·X−εω , (ℓ=±2)
(2.8)

where, ∂J = ∂z for ℓ=+1,+2 , ∂J = ∂z̄ for ℓ=−1,−2. The conformal wave functions corre-

sponding to the graviton and gauge boson, up to gauge and diffeo transformations, respectively,

can then be written as:

A∆,ℓ
µ = g(∆)V ∆,ℓ

µJ +gauge

G∆,ℓ
µν = f (∆)H∆,ℓ

µν +diffeo
(2.9)
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where

g(∆) =
∆−1

Γ(∆+1)
, f (∆) =

1
2

∆(∆−1)
Γ(∆+2)

(2.10)

are the normalization constants3. The conformal primaries for nontrivial spins are then given

by [7],

ψ
±
∆,ℓ=−1/2;α(X ,z, z̄) = |q⟩αϕ

±
∆+ 1

2
(X ,z, z̄)

ψ
±;α̇
∆,ℓ=1/2(X ,z, z̄) = |q]α̇ϕ

±
∆+ 1

2
(X ,z, z̄)

V µ±
∆,ℓ=±1(X ,z, z̄) = ε

µ

ℓ=±1(q,r)ϕ
±
∆
(X ,z, z̄)

Hµν±
∆,ℓ=±2(X ,z, z̄) = ε

µ

ℓ=±1(q,r)V
ν±
∆,ℓ=±1(X ,z, z̄)

ψ
µ±
∆,ℓ=−3/2(X ,z, z̄) = ε

µ

ℓ=−1(q,r)ψ
±
∆,ℓ=−1/2(X ,z, z̄)

ψ̄
µ±
∆,ℓ=+3/2(X ,z, z̄) = ε

µ

ℓ=+1(q,r)ψ̄
±
∆,ℓ=+1/2(X ,z, z̄)

(2.11)

where the polarisations are given by

ε
µ

ℓ=+1(q,r) =
⟨r |σ µ |q]√

2⟨rq⟩
, ε

µ

ℓ=−1(q,r) =
[r |σ̄ µ |q⟩√

2[qr]
(2.12)

with r is a reference null vector and σ̄ µ ≡ (1,−σx,−σy,−σz).

In a scattering process, we take all momenta to be outgoing. We now define celestial am-

plitude or celestial correlator on CS2 as the Mellin transform of the amplitudes:〈
N

∏
n=1

O∆n,ℓn (zn, z̄n)

〉
≡

(
N

∏
n=1

cn (∆n)
∫

dωnω
∆n−1
n

)
δ
(4)

(
N

∑
n=1

ωnqn

)
Aℓ1...ℓN (ωn,zn, z̄n) ,

(2.13)

where Aℓ1,...,ℓn is the bulk amplitude with external particles with helicities ℓ1, . . . , ℓn, and cn are

the normalization constants.

The celestial correlators can be shown to transform as a conformal correlator under SL(2,C):

〈
N

∏
n=1

O∆n,ℓn

(
azn +b
czn +d

,
āz̄n + b̄
c̄z̄n + d̄

)〉
=

N

∏
i=1

(czi +d)∆i+ℓi(c̄z̄i + d̄)∆i−ℓi

〈
N

∏
n=1

O∆n,ℓn (zn, z̄n)

〉
.

(2.14)

3The presence of normalization constants (g(∆), f (∆)) fixes the fields with spin 1 and spin 2 to be pure gauge
and pure diffeomorphisms respectively under soft conformal limits [186], ∆ → 1 and ∆ → 0,1. These factors
implement the CPT symmetry of the 4D theory at the level of celestial CFT [185].
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pn

pn−1
pn + pn−1

Figure 2.2: Feynman diagram for pn||pn−1, in a n−gluon scattering process. The blob rep-
resents the rest of the interaction vertices of the scattering process. The collinear singularity
occurs when the collinear particles are emitted from the same 3−gluon vertex [122].

where 
a b

c d

 ∈ SL(2,C). (2.15)

In the language of celestial CFT, the operator product expansion (OPE) of the conformal opera-

tors can be extracted from the correlator in Eq.(2.13) by taking the limits of coinciding insertion

points on CS2. The same implies a collinear limit of momenta in the scattering amplitudes. The

form of the OPEs depends on different gauge/gravity conformal operators in various helicity

combinations within their collinear limit.

Below, I will discuss the CCFT analysis using the Pure Yang-Mills theory as an example.

I will highlight the Soft and Collinear sector of celestial scattering amplitude and how it helps

in constructing the asymptotic symmetry algebra. The entire analysis will be shown in the

celestial basis in the bulk of our Mink4.

2.4 Pure Yang-Mills (YM) theory

Let us discuss the tree-level amplitudes in Yang-Mills theory with two collinear momenta given

by the collinear poles [185].

In our context, when two massless particles propagate with parallel four-momenta, they are

said to be collinear with each other. The propagator has a pole when a virtual particle splits

into a collinear pair via a three-point interaction (Fig.2.2). Such singularities can be separated

out via collinear limit where the only combined vertex contributes to the divergence. This way,

we can factorize our tree amplitudes. Let the combined momentum of the collinear gluons be

Pµ = pµ

n−1 + pµ
n = ωPqµ

P ,
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where the parametrizations are as follows

ωP = ωn−1 +ωn, qµ

P = qµ

n−1 = qµ
n .

The collinear particles emerge from the same 3-gluon vertex. Here, εi is the polarization of the

ith gluon. Now, the propagator and the vertex contribution in the momentum space are given

by [122]

−i
2pn−1.pn

(−i)(−g)
[
(εn−1.εn)(pn−1 − pn)

µ −2(εn.pn−1)ε
µ

n−1 +2(εn−1.pn)ε
µ
n

]
For instance, in the case of two equal helicity collinear particles (εn−1.εn = 0),

A(1, · · ·n−1h,nh)→ g√
2

(
εn−1.pn − εn.pn−1

pn−1.pn

)
A(1, · · ·Ph)

In the above, we have considered the color-stripped gluon amplitudes.

Let’s translate this from the momentum basis to celestial basis.

At tree level, the partial amplitudes 4 for possible helicity combinations are given by [185],

M
(
1, . . . ,n−1+,n+

)
=

1
z(n−1)n

ωP

ωn−1ωn
M
(
1, . . . ,n−2,P+

)
+ . . .

M
(
1, . . . ,n−1−,n−

)
=

1
z̄(n−1)n

ωP

ωn−1ωn
M
(
1, . . . ,n−2,P−)+ . . .

M
(
1, . . . ,n−1−,n+

)
=

1
z(n−1)n

ωn−1

ωnωP
M
(
1, . . . ,n−2,P−)

+
1

z̄(n−1)n

ωn

ωn−1ωP
M
(
1, . . . ,n−2,P+

)
+ . . . .

(2.16)

where z(n−1)n = zn − z(n−1). Let us explain the notation used in the above expression. In LHS,

we have the partial amplitudes M
(

1, . . . ,(n−1)α ,nβ

)
of n gauge bosons with two adjacent

gauge bosons n− 1, n with their specific helicities α,β = ±1. In the RHS, we have n− 1

point partial gauge boson amplitude with the (n − 1)-th gauge boson having the combined

momenta P of the collinear pair with helicity α =±1. The RHS also contains leading collinear

poles corresponding to the adjacent bosons. After Mellin transforms these amplitudes as in

4Partial amplitudes are the color-stripped amplitudes corresponding to a particular choice of the Chan-Paton
factor Tr(T 1T 2 . . .T n). See [122] for details.
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k

pn

pn + k

pm

(a) k gluon attached to nth leg.

pm

k
pm + k

pn

(b) k gluon attached to the mth leg.

Figure 2.3: Feynman diagram for the soft (k → 0) singularity, in a n−gluon scattering process.
This arises due to the pole structure of the intermediate propagator[122], where a virtual gluon
goes on-shell by emitting as a soft gluon. The two diagrams are the two possibilities, where the
k gluon is either attached to (a) the nth leg or to the (b) mth leg.

Eq.(2.13), we extract all the OPEs corresponding to the partial amplitudes as follows,

Oa
λ1+

(z, z̄)Ob
λ2+

(w, w̄) =
C1

z−w ∑
c

f abcOc
(λ1+λ2)+

(w, w̄)+ . . .

Oa
λ1−(z, z̄)O

b
λ2−(w, w̄) =

C2

z̄− w̄ ∑
c

f abcOc
(λ1+λ2)−(w, w̄) . . .

Oa
λ1−(z, z̄)O

b
λ2+

(w, w̄) =
C3

z−w ∑
c

f abcOc
(λ1+λ2)−(w, w̄)+

C4

z̄− w̄ ∑
c

f abcOc
(λ1+λ2)+

(w, w̄)+ . . .

(2.17)

where ∆i = 1+ iλi and Ci are the normalization constants given in [185].

Likewise, in a scattering process, when a virtual particle goes on-shell, we get a soft particle,

which results in soft singularities (Fig.2.3). The color-stripped part of the propagator and vertex

contribution is given in momentum space as in [122] as,

For Fig.2.3a in k 7→ 0, the propagator and three-gluon vertex contribute

−i
2k.pn

(−i)(−g)
[
(εk.εn)(k− pn)

µ −2(εn.k)ε
µ

k +2(εk.pn)ε
µ
n

]
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The above result has to be contracted with the ε
µ
n at the end to incorporate Lorentz invariance of

the amplitude. One can note here that the first term will vanish as a result of gauge invariance as

(k− pn)
µ =−2k.pn = 0 under k → 0. Hence, only the last term survives. The net effect is that,

up to an overall factor, the (k,n) pair is replaced by a single gluon carrying the momentum and

helicity of the nth gluon. Similarly, we have the contribution coming from Fig.2.3b. Hence, we

have the color-stripped amplitude as,

A(1,2, · · ·m,k,n, · · · ,N)→ g√
2

(
εk.pn

k.pn
− εk.pm

k.pm

)
A(1,2, · · ·m,n, · · · ,N).

This is up to a relative sign due to the antisymmetricity of the structure constant.

In CCFT, we assign a conformal operator to each of the soft particles whose soft energy

(ω → 0) limit corresponds to conformal soft limit ∆ → 1 in the case of gauge Bosons and

∆ → 0 and ∆ → 1 in case of gravitons [186]. An n−point scattering amplitude in YM theory

(in celestial basis) after Mellin transformation is given by,

AJ1...Jn (∆i,zi, z̄i) =

(
n

∏
i=1

g(∆i)
∫

dωi ω
∆i−1
i

)
δ
(4)

(
∑

i
εiωiqi

)
Mℓ1...ℓn (ωi,zi, z̄i) (2.18)

where the arguments (∆i,zi, z̄i) in both sides span over n values.

In YM theory, for any helicity configurations, after taking the soft limit of the nth particle,

we have our celestial YM amplitude in Mellin space [185] as,

AJ1,J2,...,Jn−1(Jn=+1) = (−i)

(
1

z(n−1)n
+

1
zn1

)
AJ1,J2,...,Jn−1. (2.19)

For negative helicities, we have a similar anti-holomorphic relation.

Using the relation between the correlator and the scattering amplitude defined in Eq.(2.13),

one can now write the correlator corresponding to the above amplitude by summing over all

Chan-Paton factors [185] (see footnote 4). This gives

〈
Oa1

∆1,J1
Oa2

∆2,J2
. . .Oan−1

∆n−1,Jn−1
Oan

∆n,Jn

〉
= ∑

σ∈Sn−1

Aσ
J1J2...Jn−1Jn

Tr(T a1T aσ(2) . . .T aσ(n−1)T aσ(n)) .
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This gives us the Ward identity with the soft current, ja(z) = lim
∆→1

Oa
∆,+(z, z̄),

〈
ja(z)Ob1

∆1,J1
(z1, z̄1)Ob2

∆2,J2
(z2, z̄2) . . .Obn

∆n,Jn
(zn, z̄n)

〉
=

n

∑
i=1

∑
c

f abic

z− zi

〈
Ob1

∆1,J1
(z1, z̄1) . . .Oc

∆i,Ji
(zi, z̄i) . . .Obn

∆n,Jn
(zn, z̄n)

〉
.

(2.20)

Similarly, we can find the Ward identity for the anti-holomorphic current ja
(z̄)= lim

∆→1
Oa

∆,−(z, z̄).

These Ward identities can also be derived using OPEs. In the CCFT technique, the soft and

collinear limits of the celestial amplitudes in a given theory are the necessary ingredients for

asymptotic symmetry analysis.

In the next chapter, we have shown the proper asymptotic symmetry analysis with the use

of the above CCFT technique in the case of Einstein-Yang-Mills and Einstein-Maxwell Theory.
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CHAPTER 3

ASYMPTOTIC SYMMETRY OF EINSTEIN-YANG-MILLS AND

EINSTEIN-MAXWELL THEORY IN 4D

This chapter is based on the work conducted in collaboration with Nabamita Banerjee and

Ranveer K. Singh, JHEP 01 (2022) 033, published on 10th January 2022.

3.1 Introduction

In this chapter, we have computed the asymptotic BMS algebra in Einstein-Yang-Mills (EYM)

and Einstein-Maxwell (EM) theories using the above-discussed CCFT technique. Both the

symmetry algebras are already known in the literature [153, 353], and our results match with

them. This analysis checks the alternate prescription of finding asymptotic symmetry algebras

for four-dimensional flat theories.

Celestial amplitudes are of immense importance as an independent entity in itself [344]. As

stated earlier, there are an infinite number of symmetries in asymptotically flat theories. These

symmetries impose constraints on the celestial amplitudes via Ward identities, which give us

the soft theorems in terms of celestial amplitudes [185]. Since the bulk scattering amplitudes

are related to celestial amplitudes via Mellin transformation, these constraints, in turn, imply

constraints on the bulk scattering amplitude. Thus, a more thorough understanding of celestial

amplitudes can uncover new symmetries and constraints on the bulk amplitudes.

Given the defined celestial amplitude, we then construct conserved currents of the CCFT via

shadow transform [351] of the conformal operators and compute the OPEs of various currents.

The OPEs give us the algebra of the Laurent modes of the currents using standard methods of

2D CFT. After quantization, these modes act as the generators of the BMS algebra. Thus, the

computations of asymptotic symmetry algebra reduce to the computation of appropriate OPEs,

which in turn depends on the soft and collinear limits in the bulk.

In Section 2.3, we record the preliminaries for writing the currents, including the properties

of conformal primaries, and set up notations for the rest of the paper. In Section 3.2, we define

the current corresponding to the conformal gauge Boson operator in EYM theory and write the

OPE with spin 1 primary operators. In Section 3.2.2, we derive the OPEs of different com-

binations of the EYM currents with the supertranslation and superrotation generators of pure
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BMS symmetry. We further construct a composite current and elaborate on its significance. In

Section 3.3, we compute the symmetry algebra from the modes of currents and find the u(N)

extended bms4 algebra. In Section 3.4, we define the current corresponding to the confor-

mal operator in a u(1) gauge theory and use the results of previous sections with appropriate

changes to compute the asymptotic symmetry algebra of EM theory. We end this chapter with

discussions and open questions. Finally, in Appendix A, we compute certain integrals using the

global conformal invariance of the celestial correlators and verify the conformal dimension of

our normalized current using the traditional method of constructing OPE with the superrotation

generators.

3.2 Asymptotic Symmetry Generators in EYM Theory

In this section, we look for operators in the corresponding CCFT of EYM theory that will

generate the asymptotic symmetry of the theory at null infinity. As per our expectation in this

case the asymptotic symmetry algebra will be an extension of the usual bms4 algebra by an

u(N) current.

3.2.1 The symmetry currents

We first construct the currents in our theory. Following [186], we define the energy-momentum

tensor T (z) (and T (z̄)) as the shadow transform of the ∆ = 0 graviton conformal operator O0,−2

(and O0,+2):

T (z) =
3!
2π

∫
d2z′

1

(z− z′)4O0,−2
(
z′, z̄′

)
T (z̄) =

3!
2π

∫
d2z′

1

(z̄− z̄′)4O0,+2
(
z′, z̄′

) (3.1)

The usual superrotations of bms4 are generated by T and T . The supertranslations are generated

by the supertranslation current P(z, z̄) that is constructed from graviton conformal operators

with ∆ = 1 as in [186]. For this purpose we first look for the currents P(z), P(z) which are

defined as the level one descendant of the ∆ = 1 graviton conformal operator as,

P(z) = ∂z̄O1,+2(z, z̄)

P(z̄) = ∂zO1,−2(z, z̄).
(3.2)
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Now, the holomorphic and antiholomorphic currents can be written as [186],

P(z) =
1

8πi

∮
dz̄ P(z, z̄), P(z̄) =

1
8πi

∮
dz P(z, z̄). (3.3)

We now define a current corresponding to the conformal operator of the gluon Aa
µ which would

generate the u(N)-gauge transformations as

Ga(z) =
1

2π

∫
d2z′

1

(z− z′)2O
a
1,−1(z

′, z̄′)

Ga
(z̄) =

1
2π

∫
d2z′

1

(z̄− z̄′)2O
a
1,+1(z

′, z̄′).
(3.4)

The OPEs of T,T and P,P with a primary operator Oa
∆,ℓ with conformal weights (h, h̄) are

already calculated in [186]. We record the result here for later use,

T (z)O∆,ℓ(w, w̄) =
h

(z−w)2O∆,ℓ(w, w̄)+
1

z−w
∂wO∆,ℓ(w, w̄)+ regular.

T (z̄)O∆,ℓ(w, w̄) =
h̄

(z̄− w̄)2O∆,ℓ(w, w̄)+
1

z̄− w̄
∂w̄O∆,ℓ(w, w̄)+ regular.

(3.5)

For P(z) we have

P(z)O∆,ℓ(w, w̄) =
(∆−1)(∆+1)

4∆

1
z−w

O∆+1,ℓ(w, w̄)+ regular (ℓ=±1),

P(z)O∆,ℓ(w, w̄) =
(∆−1)(∆+2)

4(∆+1)
1

z−w
O∆+1,ℓ(w, w̄)+ regular (ℓ=±2),

(3.6)

and similar OPEs hold for P(z̄) with conjugated poles.

We now calculate the OPE of Ga and Ga with spin 1 primary operators Ob
∆,ℓ. For N such

primary operators, we have〈
Ga(z)

M

∏
n=1

Obn
∆n,ℓn

(zn, z̄n)

〉
=

1
2π

∫
d2z0

1

(z− z0)
2

〈
Oa

1,−1(z0, z̄0)
M

∏
n=1

Obn
∆n,ℓn

(zn, z̄n)

〉
.
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Further, using the soft limit as in [185, Eq. (3.32)] we have〈
Oa

1,−1(z0, z̄0)
M

∏
n=1

Obn
∆n,ℓn

(zn, z̄n)

〉

=
M

∑
i=1

∑
c

f abic

z̄0 − z̄i

〈
Ob1

∆1,ℓ1
(z1, z̄1) . . .Oc

∆i,ℓi
(zi, z̄i) . . .ObM

∆M ,ℓM
(zM, z̄M)

〉 (3.7)

The above relation implies that〈
Ga(z)

M

∏
n=1

Obn
∆n,ℓn

(zn, z̄n)

〉
=

M

∑
i=1

∑
c

f abic 1
2π

∫
d2z0

1

(z− z0)
2

1
z̄0 − z̄i

×
〈
Ob1

∆1,ℓ1
(z1, z̄1) . . .Oc

∆i,ℓi
(zi, z̄i) . . .ObM

∆M ,ℓM
(zM, z̄M)

〉
.

To solve the integral we use (cf. [186, Eq. (3.7)])

∂z0

(
1

z− z0

)
=

1
(z− z0)2 , ∂z0

(
1

z̄0 − z̄

)
= 2πδ

(2) (z0 − z) . (3.8)

Thus, the integral after integrating by parts, becomes

∫
d2z0

1

(z− z0)
2

1
z̄0 − z̄i

=−
∫

d2z0

(
1

z− z0

)
∂z0

(
1

z̄0 − z̄i

)
=− 2π

z− zi
. (3.9)

Thus we get the OPE as〈
Ga(z)

M

∏
n=1

Obn
∆n,ℓn

(zn, z̄n)

〉

=−
M

∑
i=1

∑
c

f abic

z− zi

〈
Ob1

∆1,ℓ1
(z1, z̄1) . . .Oc

∆i,ℓi
(zi, z̄i) . . .ObM

∆M ,ℓM
(zM, z̄M)

〉
(3.10)

This gives the OPE

Ga(z)Ob
∆,ℓ(w, w̄) =

1
w− z ∑

c
f abcOc

∆,ℓ(w, w̄). (3.11)
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Similarly, we have〈
Ga

(z̄)
M

∏
n=1

Obn
∆n,ℓn

(zn, z̄n)

〉

=−
M

∑
i=1

∑
c

f abic

z̄− z̄i

〈
Ob1

∆1,ℓ1
(z1, z̄1) . . .Oc

∆i,ℓi
(zi, z̄i) . . .ObM

∆M ,ℓM
(zM, z̄M)

〉
(3.12)

which gives the OPE

Ga
(z̄)Ob

∆,ℓ(w, w̄) =
1

w̄− z̄ ∑
c

f abcOc
∆,ℓ(w, w̄). (3.13)

3.2.2 The OPEs of symmetry current generators

We now have all the tools required to compute the OPEs of the symmetry currents. The OPEs of

combinations of T,T and P,P have already been computed in [186]. We compute the remaining

combinations below.

Constructiof of OPEs: GaGb and GaGb

We have〈
Ga(z)Gb(w)

M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
=

1
4π2

∫
d2z0

1

(z− z0)
2

∫
d2z1

1

(w− z1)
2

×

〈
Oa

1,−1(z0, z̄0)Ob
1,−1(z1, z̄1)

M

∏
n=1

Obn
∆n,ℓn

(zn, z̄n)

〉
.

Since this OPE involves double soft limit with identical helicity, it does not depend on the order

in which take the soft limit. We first take the soft limit corresponding to the gauge index a. We

have〈
Oa

1,−1(z0, z̄0)Ob
1,−1(z1, z̄1)

M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉

=
M

∑
i=1

∑
c

f abic

z̄0 − z̄i

〈
Ob1=b

1,−1 (z1, z̄1) . . .Oc
∆i,ℓi

(zi, z̄i) . . .ObM
∆M ,ℓM

(zM, z̄M)
〉
.
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We now take the first shadow transform. Using Eq. (3.9), we get〈
Ga(z)Gb(w)

M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
=− 1

2π

M

∑
i=1

∑
c

f abic
∫

d2z1
1

(w− z1)
2

1
z− zi

×
〈
Ob1=b

1,−1 (z1, z̄1) . . .Oc
∆i,ℓi

(zi, z̄i) . . .ObM
∆M ,ℓM

(zM, z̄M)
〉
.

The integral on the right hand side is regular as z → w as a result of the global conformal

invariance of the correlator in the integrand, see Appendix A.1.1.

This implies that the concerned OPE is regular. Hence,

Ga(z)Gb(w)∼ regular. (3.14)

Similarly,

Ga
(z̄)Gb

(w̄)∼ regular. (3.15)

GaGb
,GaGb and the Composite Current

We consider〈
Ga(z)Gb

(w̄)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
=

1
4π2

∫
d2z0

1

(z− z0)
2

∫
d2z1

1

(w̄− z̄1)
2

×

〈
Oa

1,−1(z0, z̄0)Ob
1,+1(z1, z̄1)

M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
.

This is a double soft limit with opposite helicities and hence we expect that the result to depend

on the order in which we take the soft limits. Let us first take the soft limit corresponding to

the gauge index a. Using the soft limit,〈
Oa

1,−1(z0, z̄0)Ob
1,+1(z1, z̄1)

M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉

= ∑
c

f abc

z̄0 − z̄1

〈
Oc

1,+1 (z1, z̄1) . . .ObM
∆M ,ℓM

(zM, z̄M)
〉

+
M

∑
i=2

∑
c

f abic

z̄0 − z̄i

〈
Ob1=b

1,+1 (z1, z̄1) . . .Oc
∆i,ℓi

(zi, z̄i) . . .ObM
∆M ,ℓM

(zM, z̄M)
〉
.

=
M

∑
i=1

∑
c

f abic

z̄0 − z̄i

〈
Ob1=b

1,+1 (z1, z̄1) . . .Oc
∆i,ℓi

(zi, z̄i) . . .ObM
∆M ,ℓM

(zM, z̄M)
〉
.

(3.16)
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and following the calculations of previous section, we have〈
Ga(z)Gb

(w̄)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
=− 1

2π

M

∑
i=1

∑
c

f abic
∫

d2z1
1

(w̄− z̄1)
2

1
z− zi

×
〈
Ob1=b

1,+1 (z1, z̄1) . . .Oc
∆i,ℓi

(zi, z̄i) . . .ObM
∆M ,ℓM

(zM, z̄M)
〉
.

We now take the second soft limit. We finally get〈
Ga(z)Gb

(w̄)
M

∏
n=2

O∆n,ℓn (zn, z̄n)

〉
=− 1

2π

M

∑
i=1

M

∑
j=2

∑
c,d

f abic f bi1bi jd
∫

d2z1
1

(w̄− z̄1)
2

1
z− zi

1
z1 − z j

×
〈
Obi2

∆2,ℓ2
(z2, z̄2) . . .Oc

∆i,ℓi
(zi, z̄i) . . . . . .Od

∆ j,ℓ j

(
z j, z̄ j

)
. . .ObiM

∆M ,ℓM
(zM, z̄M)

〉
,

where for 1 ≤ i ≤ M, 2 ≤ j ≤ M, we have

bi j =

b j i ̸= j

c i = j,
b1 = b.

Let us briefly explain various terms in the above expressions. Splitting the sum over i, the i = 1

term comes from the first term of the RHS of (3.16) and here b11 = c. The i ≥ 2 terms come

from the second term of (3.16). Further, the integral is easily seen to be,

∫
d2z1

1

(w̄− z̄1)
2

1
z− zi

1
z1 − z j

=− 1
z− zi

∫
d2z1

1
(w̄− z̄1)

∂z̄1

(
1

z1 − z j

)
=− 2π

z− zi

1
w̄− z̄ j

, (i ̸= 1).
(3.17)

When i = 1, we have

∫
d2z1

1

(w̄− z̄1)
2

1
z− z1

1
z1 − z j

=− 2π

z− z j

∫
d2z1

1
(w̄− z̄1)

∂z̄1

(
1

z− z1
+

1
z1 − z j

)
=− 2π

z− z j

(
1

w̄− z̄
+

1
w̄− z̄ j

) (3.18)
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Substituting these integrals, we get〈
Ga(z)Gb

(w̄)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉

=

[
1

w̄− z̄

M

∑
j=2

∑
c,d

f abc f cb jd 1
z− z j

+
M

∑
j=2

∑
c,d

f abc f cb jd 1
z− z j

1
w̄− z̄ j

]
×
〈
Ob2

∆2,ℓ2
(z2, z̄2) . . .Od

∆ j,ℓ j

(
z j, z̄ j

)
. . .ObM

∆M ,ℓM
(zM, z̄M)

〉
+

M

∑
i=2

M

∑
j=2

∑
c,d

f abic f bbi jd 1
z− zi

1
w̄− z̄ j

〈
Obi2

∆2,ℓ2
(z2, z̄2) . . .

〉
.

(3.19)

Next we compute Gb
(z̄)Ga(w). Proceeding as in the previous calculation we get

〈
Gb

(z̄)Ga(w)
M

∏
n=2

O∆n,ℓn (zn, z̄n)

〉
=− 1

2π

M

∑
i=1

∑
c

f bbic
∫

d2z1
1

(w− z1)
2

1
z̄− z̄i

×
〈
Ob1=a

1,−1 (z1, z̄1) . . .Oc
∆i,ℓi

(zi, z̄i) . . .ObM
∆M ,ℓM

(zM, z̄M)
〉

=

[
1

w− z

M

∑
j=2

∑
c,d

f bac f cb jd 1
z̄− z̄ j

+
M

∑
j=2

∑
c,d

f bac f cb jd 1
z̄− z̄ j

1
w− z j

]
×
〈
Ob2

∆2,ℓ2
(z2, z̄2) . . .Od

∆ j,ℓ j

(
z j, z̄ j

)
. . .ObM

∆M ,ℓM
(zM, z̄M)

〉
+

M

∑
i=2

M

∑
j=2

∑
c,d

f bbic f abi jd 1
z̄− z̄i

1
w− z j

〈
Obi2

∆2,ℓ2
(z2, z̄2) . . .

〉
.

As expected, these OPEs depend on the order in which we take the soft limits. To construct a

quantity which is independent of this choice, we consider the following combination,

Gab(z, z̄;w, w̄) := Ga(z)Gb
(w̄)−Gb

(w̄)Ga(z)≡ [Ga(z),Gb
(w̄)].
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Let us now compute the OPE.〈
Gab(z, z̄;w, w̄)

M

∏
n=2

O∆n,ℓn (zn, z̄n)

〉

=
M

∑
j=2

∑
c,d

f abc f cb jd
(

1
w̄− z̄

1
z− z j

+
1

z−w
1

w̄− z̄ j

)〈
. . .Od

∆ j,ℓ j

(
z j, z̄ j

)
. . .
〉

+
M

∑
j=2

∑
c,d

f abc f cb jd
(

1
z− z j

1
w̄− z̄ j

+
1

w̄− z̄ j

1
z− z j

)〈
. . .Od

∆ j,ℓ j

(
z j, z̄ j

)
. . .
〉

+
M

∑
i=2

M

∑
j=2

∑
c,d

(
f abic f bbi jd 1

z− zi

1
w̄− z̄ j

− f bbic f abi jd 1
w̄− z̄i

1
z− z j

)
×
〈
. . .Oc

∆i,ℓi
(zi, z̄i) . . .Od

∆ j,ℓ j

(
z j, z̄ j

)
. . .
〉
,

where we used the fact that f abc =− f bac.

Recollecting terms after a bit of simplification, we have〈
Gab(z, z̄;w, w̄)

M

∏
n=2

O∆n,ℓn (zn, z̄n)

〉

=
M

∑
j=2

∑
c,d

f abc f cb jd
(

1
w̄− z̄

1
z− z j

+
1

z−w
1

w̄− z̄ j

)〈
. . .Od

∆ j,ℓ j

(
z j, z̄ j

)
. . .
〉

+
M

∑
j=2

∑
c,d

[
( f abc f cb jd + f ab jc f bcd)

(z− z j)(w̄− z̄ j)
+

( f abc f cb jd − f bb jc f acd)

(w̄− z̄ j)(z− z j)

]〈
. . .Od

∆ j,ℓ j

(
z j, z̄ j

)
. . .
〉

+
M

∑
i, j=2
i ̸= j

∑
c,d

(
f abic f bb jd 1

z− zi

1
w̄− z̄ j

− f bbic f ab jd 1
w̄− z̄i

1
z− z j

)〈
Obi2

∆2,ℓ2
(z2, z̄2) . . .

〉

The third term on the r.h.s of the above equation exactly vanishes on swapping dummy sum-

mation variables c ↔ d and i ↔ j.

Now using the Jacobi identity for structure constants,

f abc f ced + f aec f bcd + f bec f cad = 0

we get ,

∑
c
( f abc f cb jd + f ab jc f bcd) = ∑

c
( f abc f cb jd + f b jac f cbd) =−∑

c
f bb jc f cad.
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Similarly,

∑
c
( f abc f cb jd − f bb jc f acd) =−∑

c
f b jac f cbd. (3.20)

Substituting these we get,〈
Gab(z, z̄;w, w̄)

M

∏
n=2

O∆n,ℓn (zn, z̄n)

〉

=
M

∑
j=2

∑
c,d

f abc f cb jd
(

1
w̄− z̄

1
z− z j

+
1

z−w
1

w̄− z̄ j

)〈
. . .Od

∆ j,ℓ j

(
z j, z̄ j

)
. . .
〉

+
M

∑
j=2

∑
c,d

[
f bb jc f acd

(z− z j)(w̄− z̄ j)
+

f b jac f bcd

(w̄− z̄ j)(z− z j)

]〈
. . .Od

∆ j,ℓ j

(
z j, z̄ j

)
. . .
〉

(3.21)

Here the singular terms in the above correlator involve insertions of the operator Oc
1,−1 (z, z̄)

and Oc
1,+1 (z, z̄) with shadow transformation which are Gc(z) and Gc

(z̄). We have the OPE

corresponding to our defined current,〈
Gab(z, z̄;w, w̄)

M

∏
n=2

O∆n,ℓn (zn, z̄n)

〉

=
M

∑
j=2

∑
c,d

f abc f cb jd
(

1
w̄− z̄

1
z− z j

+
1

z−w
1

w̄− z̄ j

)〈
. . .Od

∆ j,ℓ j

(
z j, z̄ j

)
. . .
〉

= ∑
c,d

f abc

z̄− w̄

[
−

M

∑
j=2

f cb jd

z− z j

〈
. . .Od

∆ j,ℓ j

(
z j, z̄ j

)
. . .
〉]

−∑
c,d

f abc

z−w

[
−

M

∑
j=2

f cb jd

w̄− z̄ j

〈
. . .Od

∆ j,ℓ j

(
z j, z̄ j

)
. . .
〉]

(3.22)

Using Eq.(3.10) and Eq.(3.12), we can write the bracketed terms in r.h.s as

−
M

∑
j=2

f cb jd

z− z j

〈
. . .Od

∆ j,ℓ j

(
z j, z̄ j

)
. . .
〉
=

〈
Gc(z)

M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
,

−
M

∑
j=2

f cb jd

w̄− z̄ j

〈
. . .Od

∆ j,ℓ j

(
z j, z̄ j

)
. . .
〉
=

〈
Gc

(w̄)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
.

Thus,〈
Gab(z, z̄;w, w̄)

M

∏
n=2

O∆n,ℓn (zn, z̄n)

〉
= ∑

c,d

f abc

z̄− w̄

〈
Gc(z)

M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉

−∑
c,d

f abc

z−w

〈
Gc

(w̄)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉 (3.23)
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Hence the OPE:

Ga(z)Gb
(w̄)−Gb

(w̄)Ga(z) =
1

z̄− w̄ ∑
c

f abcGc(z)+
1

w− z ∑
c

f abcGc
(w̄)+ regular.

We further extract the finite piece of Gab(z, z̄;w, w̄) remaining at w = z. To this end, let us define

the current

Gab(z, z̄) = : Gab(z, z̄;z, z̄) : = : Ga(z)Gb
(z̄)−Gb

(z̄)Ga(z) : ≡ : [Ga(z),Gb
(z̄)] : . (3.24)

Hence the correlator of the normal ordered current is,〈
Gab(z, z̄)

M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
=

M

∑
j=2

∑
c,d

[
f bb jc f acd + f b jac f bcd

(z− z j)(z̄− z̄ j)

]〈
. . .Od

∆ j,ℓ j

(
z j, z̄ j

)
. . .
〉

=
M

∑
j=2

∑
c,d

[
f abc f cb jd

(z− z j)(z̄− z̄ j)

]〈
. . .Od

∆ j,ℓ j

(
z j, z̄ j

)
. . .
〉
,

(3.25)

where we used Eq. (3.20). In particular, we have the OPE

Gab(z, z̄)Oc
∆,ℓ(w, w̄) =

1
z−w

1
z̄− w̄ ∑

d,e
f abd f dceOe

∆,ℓ(w, w̄)+ regular. (3.26)

OPEs: T Ga,T Ga and T Ga,T Ga

• T (z)Ga(w):

We have〈
T (z)Ga(w)

M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
= lim

∆→1

1
2π

∫
d2z1

1

(w− z1)
2

〈
T (z)Oa

∆,−1 (z1, z̄1)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉

= lim
∆→1

1
2π

∫
d2z1

1

(w− z1)
2

[
h

(z− z1)
2

〈
Oa

∆,−1 (z1, z̄1)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉

+
1

z− z1
∂z1

〈
Oa

∆,−1 (z1, z̄1)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉]
+ reg.,
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where we used [352, Eq. (3.19)]. Now since h = 0, the first term in the square bracket

vanishes. To simplify notations, put W = w− z1 and Z = z− z1. We get

〈
T (z)Ga(w)

M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
= lim

∆→1

1
2π

∫
d2z1

1
W 2Z

∂z1

〈
Oa

∆,−1 (z1, z̄1)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
+ regular

= lim
∆→1

1
2π

∫
d2z1

1
z−w

(
1

W 2 −
1

WZ

)
∂z1

〈
Oa

∆,−1 (z1, z̄1)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
+ reg.

Using integration by parts in the first term in the above integral, we get

lim
∆→1

1
2π

∫
d2z1

1
W 2 ∂z1

〈
Oa

∆,−1 (z1, z̄1)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉

=− lim
∆→1

1
2π

∫
d2z1∂z1

(
1

W 2

)〈
Oa

∆,−1 (z1, z̄1)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉

= ∂w

[
lim
∆→1

1
2π

∫
d2z1

1
W 2

〈
Oa

∆,−1 (z1, z̄1)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉]

=

〈
∂wGa(w)

M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
,

where we used the fact that

∂z1

1
W 2 =−∂w

1
W 2 .

Next, using integration by parts, we have

lim
∆→1

1
2π

∫
d2z1

1
WZ

∂z1

〈
Oa

∆,−1 (z1, z̄1)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉

=− lim
∆→1

1
2π

∫
d2z1

(
1

W 2Z
+

1
WZ2

)〈
Oa

∆,−1 (z1, z̄1)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
.

= lim
∆→1

1
2π

∫
d2z1

(
1

z−w
1

WZ
− 1

WZ2

)〈
Oa

∆,−1 (z1, z̄1)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉

− 1
z−w

〈
Ga(w)

M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
.

where we have used,
1

W 2Z
=

1
z−w

(
1

W 2 −
1

WZ

)
,
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The first integral is shown to vanish in Appendix A.1.2 as a result of the global conformal

invariance of the correlator in the integrand. Putting together everything we get

〈
T (z)Ga(w)

M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
=

1
(z−w)2

〈
Ga(w)

M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
+

1
z−w

〈
∂wGa(w)

M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
.

(3.27)

This immediately gives the OPE

T (z)Ga(w) =
1

(z−w)2 Ga(w)+
1

z−w
∂wGa(w)+ regular. (3.28)

• T (z̄)Ga(w) and T (z)Ga
(w̄):

We have,

〈
T (z̄)Ga(w)

M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
= lim

∆→1

1
2π

∫
d2z1

1

(w− z1)
2

〈
T (z̄)Oa

∆,−1 (z1, z̄1)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉

= lim
∆→1

1
2π

∫
d2z1

1

(w− z1)
2

[
h̄

(z̄− z̄1)
2

〈
Oa

∆,−1 (z1, z̄1)
M

∏
n=2

O∆n,ℓn (zn, z̄n)

〉

+
1

z̄− z̄1
∂z̄1

〈
Oa

∆,−1 (z1, z̄1)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉]
+ reg.,

where we used [352, Eq. (3.19)]. Using integration by parts in second term and simpli-

fying the notation by putting W = w− z1 and Z̄ = z̄− z̄1 we get

〈
T (z̄)Ga(w)

M

∏
n=2

O∆n,ℓn (zn, z̄n)

〉
= lim

∆→1

1
2π

∫
d2z1

[
(h̄−1)
W 2Z̄2

〈
Oa

∆,−1 (z1, z̄1)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉

− 1
Z̄

(
∂z̄1

1
W 2

)〈
Oa

∆,−1 (z1, z̄1)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉]
+ reg.

=− lim
∆→1

1
2π

∫
d2z1

1
Z̄

(
∂z̄1

1
W 2

)〈
Oa

∆,−1 (z1, z̄1)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
+ reg.
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where we used integration by parts and the fact that h̄ → 1 when ∆ → 1.

Now,

∂z̄1

1
W 2 = ∂z̄∂z1

1
W

= ∂z1∂z̄1

1
W

=−2π∂z1δ
(2) (z̄1 − w̄)

So we get,

⟨T (z̄)Ga(w)⟩= lim
∆→1

h̄
∫

d2z1
1
Z̄

∂z1δ
(2) (z̄1 − w̄)

〈
Oa

∆,−1 (z1, z̄1)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉

=− lim
∆→1

h̄
∫

d2z1
1
Z̄

δ
(2) (z̄1 − w̄)∂z1

〈
Oa

∆,−1 (z1, z̄1)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉

=− lim
∆→1

∂w


〈
Oa

∆,−1(w, w̄)
M
∏

n=2
Obn

∆n,ℓn
(zn, z̄n)

〉
z̄− w̄

 ,

Now the soft limit in the numerator is given by:

lim
∆→1

〈
Oa

∆,−1(w, w̄)
M

∏
n=1

Obn
∆n,ℓn

(zn, z̄n)

〉

=
M

∑
i=1

∑
c

f abic

w̄− z̄i

〈
Ob1

∆1,ℓ1
(z1, z̄1) . . .Oc

∆i,ℓi
(zi, z̄i) . . .Obn

∆n,ℓn
(zn, z̄n)

〉
(3.29)

Thus we get,〈
T (z̄)Ga(w)

M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
=−∂w

[
M

∑
i=2

∑
c

f abic

(w̄− z̄i)(z̄− w̄)

]
×
〈
Ob2

∆1,ℓ2
(z1, z̄1) . . .Oc

∆i,ℓi
(zi, z̄i) . . .Obn

∆n,ℓn
(zn, z̄n)

〉
.

It is now clear that we will get delta functions δ (2)(z−w), δ (2)(zi−w), and the OPE will

be localised at z = w, w = zi respectively and each term will be regular as z → w.

Thus we conclude that,

T (z̄)Ga(w)∼ regular. (3.30)

Similarly,

T (z)Ga
(w̄)∼ regular. (3.31)
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• T (z̄)Ga
(w̄): We have,

〈
T (z̄)Ga

(w̄)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
= lim

∆→1

1
2π

∫
d2z1

1

(w̄− z̄1)
2

〈
T (z̄)Oa

∆,+1 (z1, z̄1)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉

= lim
∆→1

1
2π

∫
d2z1

1

(w̄− z̄1)
2

[
h̄

(z̄− z̄1)
2

〈
Oa

∆,+1 (z1, z̄1)
M

∏
n=2

O∆n,ℓn (zn, z̄n)

〉

+
1

z̄− z̄1
∂z̄1

〈
Oa

∆,+1 (z1, z̄1)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉]
+ reg.,

Since ∆ → 1 implies h̄ → 0, following previous calculations, we see that

〈
T (z̄)Ga

(w̄)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
=

1
(z̄− w̄)2

〈
Ga

(w̄)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
+

1
z̄− w̄

〈
∂w̄Ga

(w̄)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
.

(3.32)

This implies the OPE as

T (z̄)Ga
(w̄) =

1
(z̄− w̄)2 Ga

(w̄)+
1

z̄− w̄
∂w̄Ga

(w̄)+ regular. (3.33)

PGa,PGa

We have,

P(z)Ga(w) = lim
∆→1

1
2π

∫
d2z′

1

(w− z′)2 P(z)Oa
∆,−1

(
z′, z̄′

)
Now by [352], Oa

∆,−1 is a primary field with conformal weight h = ∆−1
2 , h̄ = ∆+1

2 . Thus using

[186, Eq. (3.17)], we have

P(z)Ga(w) = lim
∆→1

1
2π

∫
d2z′

1

(w− z′)2

[
(∆−1)(∆+1)

4∆

1
(z− z′)

Oa
∆+1,−1

(
z′, z̄′

)
+ reg.

]

Hence,

P(z)Ga(w)∼ regular. (3.34)
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Similarly,

P(z)Ga
(w̄)∼ regular. (3.35)

Similarly, we have

P(z̄)Ga
(w̄)∼ regular. P(z̄)Ga

(w̄)∼ regular. (3.36)

Thus we have obtained all the required OPEs for the current operators on CS2.

3.3 Asymptotic Symmetry of EYM Theory

In this section we find the asymptotic symmetry algebra of our theory. As noted earlier, we

expect the algebra to be an extension of the usual bms4 with u(N) current. Thus apart from

the usual BMS algebra [186] generators Ln, L̄m,Pn− 1
2 ,m− 1

2
, we also have Ga

m,G
b
n, which are the

modes of the u(N) currents. The BMS supertranslation operator P(z, z̄) is a primary operator

of dimension (3
2 ,

3
2) which is mode expanded as,

P(z, z̄)≡ ∑
n,m∈Z

Pn− 1
2 ,m− 1

2
z−n−1z̄−m−1

(3.37)

where Pn− 1
2 ,m− 1

2
are the supertranslation generators.

Since, h = 1 for G(z) and h̄ = 1 for G(z̄), we have the following mode expansion:

Ga(z) = ∑
m∈Z

Ga
m

zm+1 , Gb
(z̄) = ∑

n∈Z

Gb
n

z̄n+1 (3.38)

where,

Ga
m =

1
2πi

∮
dz zmGa(z), Gb

n =
1

2πi

∮
dz̄ z̄nGb

(z̄). (3.39)

To this end, we use the OPEs that we have computed in the last section to get the algebra of

Gm,Gn. To find the extended algebra we compute the commutators of Gm,Gn with usual BMS

algebra generators. OPEs of Eq. (3.34), (3.35) and (3.36) immediately implies:

[
Ga

m,Pn− 1
2 ,−

1
2

]
=
[
Ga

m,Pn− 1
2 ,−

1
2

]
=
[
Ga

m,P− 1
2 ,n−

1
2

]
=
[
Ga

m,P− 1
2 ,n−

1
2

]
= 0. (3.40)
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The remaining supertranslation generators are given by [186],

Pn− 1
2 ,m− 1

2
=

1
iπ(m+1)

∮
dw̄w̄m+1

[
T̄ (w̄),Pn− 1

2 ,−
1
2

]
(3.41)

Then,

[
Ga

m,Pn− 1
2 ,m− 1

2

]
=

1
iπ(m+1)

∮
dw̄w̄m+1

[
Ga

m,
[
T (w̄),Pn− 1

2 ,−
1
2

]]
=− 1

iπ(m+1)

∮
dw̄w̄m+1

([
Pn− 1

2 ,−
1
2
,
[
Ga

m,T (w̄)
]]

+
[
T (w̄),

[
Pn− 1

2 ,−
1
2
,Ga

m

]])
= 0

(3.42)

Here we have used the OPE relations of Ga with T̄ and the commutation relation in Eq.(3.40).

Similarly for the antiholomorphic current,
[
Ga

m,Pn− 1
2 ,m− 1

2

]
= 0.

Hence, we can write,

[
Ga

m,Pk,l
]
=
[
Ga

m,Pk,l
]
= 0 (3.43)

where m,n ∈ Z and k, l ∈ Z+ 1
2 .

The OPE of Ga, Ga with T , T respectively in Eq. (3.30), Eq. (3.31) implies

[
Lm,G

a
n
]
=
[
Lm,Ga

n
]
= 0. (3.44)

OPE in Eq. (3.14) and Eq. (3.15) gives

[
Ga

m,G
b
n

]
=
[
Ga

m,G
a
n
]
= 0. (3.45)
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Next, we compute the commutator of Ga
n with Virasoro generators. We have

[Ln,Ga
m] =

1
(2πi)2

∮
dz
∮

dz′zn+1z′m
[
T (z),Ga (z′)]

=
1

(2πi)2

∮
dz
∮

dz′zn+1z′m
[

1
(z− z′)2 Ga (z′)+ 1

z− z′
∂z′G

a (z′)]
=

1
2πi

∮
dz′z′m(n+1)z′nGa (z′)− 1

2πi

∮
dz′(m+n+1)z′m+nGa (z′)

= (n+1)Ga
m+n − (m+n+1)Ga

m+n

=−mGa
m+n

where we used integration by parts. Thus we have

[Ga
m,Ln] = mGa

m+n. (3.46)

Similarly, [
Ga

m,Ln
]
= mGa

m+n. (3.47)

We also have a composite current Gab(z, z̄) in our theory. We have the following Laurent ex-

pansion for Gab(z, z̄) (see Appendix A.2):

Gab(z, z̄) = ∑
n,m∈Z

Gab
mnz−m−1z̄−n−1, (3.48)

with

Gab
mn =

1
(2πi)2

∮
dz
∮

dz̄ zmz̄nGab(z, z̄). (3.49)

From the OPE of Eq. (3.26), we have

[
Gab

mn,Oc
∆,ℓ(w, w̄)

]
=

1
(2πi)2

∮
dz
∮

dz̄ zmz̄n
[
Gab(z, z̄),Oc

∆,ℓ(w, w̄)
]

= ∑
d,e

f abd f dce 1
(2πi)2

∮
dz
∮

dz̄ zmz̄n 1
z−w

1
z̄− w̄

Oe
∆,ℓ(w, w̄)

= wmw̄n
∑
d,e

f abd f dceOe
∆,ℓ(w, w̄).

In a similar way, using the OPEs in Eq. (3.11), (3.13) and the integral expression (3.39) for the
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modes Ga
m and Gb

n, we have

[
Ga

m,Oc
∆,ℓ(w, w̄)

]
=−wm

∑
d

f acdOd
∆,ℓ(w, w̄)[

Ga
n,Oc

∆,ℓ(w, w̄)
]
=−w̄n

∑
d

f acdOd
∆,ℓ(w, w̄).

Thus we have[[
Ga

m,G
b
n

]
,Oc

∆,ℓ(w, w̄)
]
=
[
Ga

m,
[
Gb

n,Oc
∆,ℓ(w, w̄)

]]
−
[
Gb

n,
[
Ga

m,Oc
∆,ℓ(w, w̄)

]]
=−w̄n

∑
d

f bcd
[
Ga

m,Od
∆,ℓ(w, w̄)

]
+wm

∑
d

f acd
[
Gb

n,Od
∆,ℓ(w, w̄)

]
= wmw̄n

[
∑
d,e

f bcd f adeOe
∆,ℓ(w, w̄)−∑

d,e
f acd f bdeOe

∆,ℓ(w, w̄)

]
= wmw̄n

∑
d,e

f abd f dceOe
∆,ℓ(w, w̄)

=
[
Gab

mn,Oc
∆,ℓ(w, w̄)

]
.

The above expression further justifies the equality of the two operators as

Gab
mn = [Ga

m,G
b
n] = Ga

mGb
n −Gb

nGa
m. (3.50)

Next we look for,

[
Gab

mn,Lk

]
=
[
Ga

mGb
n −Gb

nGa
m,Lk

]
= Ga

m

[
Gb

n,Lk

]
+[Ga

m,Lk]G
b
n −Gb

n [G
a
m,Lk]−

[
Gb

n,Lk

]
Ga

m

= mGa
m+kGb

n −mGb
nGa

m+k

= mGab
m+k,n.

(3.51)

Similarly, [
Gab

mn, L̄k

]
= nGab

m,n+k (3.52)

Finally, to commute the commutator of Gab
mn with Ga′b′

kl , we compute its commutator with an
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arbitary primary operator Oc
∆,ℓ(w, w̄). We have

[[
Gab

mn,Ga′b′
kl

]
,Oc

∆,ℓ(w, w̄)
]
=
[
Gab

mn,
[
Ga′b′

kl ,Oc
∆,ℓ(w, w̄)

]]
−
[
Ga′b′

kl ,
[
Gab

mn,Oc
∆,ℓ(w, w̄)

]]
= wkw̄l

∑
d,e

f a′b′d f dce
[
Gab

mn,Oe
∆,ℓ(w, w̄)

]
−wmw̄n

∑
d,e

f abd f dce
[
Ga′b′

kl ,Oe
∆,ℓ(w, w̄)

]
= wm+kw̄n+l

[
∑
d,e

f a′b′d f dce
∑
d′,e′

f abd′
f d′ee′Oe′

∆,ℓ(w, w̄)

−∑
d,e

f abd f dce
∑
d′,e′

f a′b′d′
f d′ee′Oe′

∆,ℓ(w, w̄)

]

= ∑
d,d′

f abd′
f a′b′d

(
wm+kw̄n+l

∑
e,e′

f d′de f ece′Oe′
∆,ℓ(w, w̄)

)
= ∑

d,d′
f abd f a′b′d

[
Gd′d

m+k,n+l,O
c
∆,ℓ(w, w̄)

]
.

where we have used the identity of structure constants for simplification. Hence we conclude

that [
Gab

mn,Ga′b′
kl

]
= ∑

d,d′
f abd′

f a′b′dGd′d
m+k,n+l. (3.53)

Now collecting all the commutators we get the complete set of algebra as,

[Lm,Ln] = (m−n)Lm+n[
Lm,Ln

]
= (m−n)Lm+n

[Ln,Pkl] =

(
1
2

n− k
)

Pn+k,l

[L̄n,Pkl] =

(
1
2

n− l
)

Pk,n+l

[
Gab

mn,Pk,l

]
= 0[

Gab
mn,Lk

]
= mGab

m+k,n[
Gab

mn,Lk

]
= nGab

m,n+k,[
Gab

mn,Ga′b′
kl

]
= ∑

d,d′
f abd′

f a′b′dGd′d
m+k,n+l.

(3.54)

The above algebra (3.54) is our bms4 with an u(N) extension [186]. This is the infinite-

dimensional symmetry algebra of Einstein-Yang-Mills theory on CS2 and can be compared

to the asymptotic symmetry algebra of the same as given in [353]. On comparing with [353],

we see that our method gives exactly the same algebra as theirs, but in a different basis. In

particular, we see that the generator jm,n
i of [353] is related to our generator Gab

mn as follows:

Gab
mn = ∑

c
f abc jm,n

c .
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Thus we see that the asymptotic symmetry algebra eymbms4 of EYM-theory has the structure

of the semi-direct sum of superrotations with the direct sum of the abelian algebra of super-

translations and nonabelian u(N)-gauge transformations represented by Gab
mn:

eymbms4 = Superrotations⊎ [Supertranslations⊕u(N)-gauge transformations] .

In the above formalism by introducing the conformal operator for u(N) gauge bosons, we have

generated the symmetry algebra of the corresponding theory. In the next section we follow

the same procedure to find the asymptotic symmetry algebra of Einstein-Maxwell theory by

introducing the conformal operator of a single gauge boson.

3.4 Asymptotic Symmetry of EM Theory

In this section we look for the asymptotic symmetry for Einstein-Maxwell theory, using the

OPEs of the corresponding CS2 amplitudes. Following the same prescription as of the last

section we define the current corresponding to the conformal operator of the photon Aµ which

is supposed to generate the u(1)-gauge transformations in a similar way:

G(z) =
1

2π

∫
d2z′

1

(z− z′)2O1,−1(z, z̄)

G(z̄) =
1

2π

∫
d2z′

1

(z̄− z̄′)2O1,+1(z, z̄)
(3.55)

We now calculate the OPE of G and G with spin 1 primary operators O∆,ℓ. For M such primary

operators, we have by Eq.(2.13),〈
G(z)

M

∏
n=1

O∆n,ℓn (zn, z̄n)

〉
=

1
2π

∫
d2z0

1

(z− z0)
2

〈
O1,−1(z0, z̄0)

M

∏
n=1

O∆n,ℓn (zn, z̄n)

〉
.

When the gauge group is u(1), the soft theorem does not involve the gauge group factors. In

particular for M bosons interacting in EM-theory, the correlator of the corresponding conformal

operators O∆i,ℓi is related to the scattering amplitude Aℓ1,...,ℓM in Mellin space as follows (cf.

[185, Eq. 3.30]): 〈
M

∏
n=1

O∆n,ℓn(zn, z̄n)

〉
= ∑

σ∈SM−1

Aσ
ℓ1,...,ℓM

(zn, z̄n), (3.56)

where Aσ
ℓ1,...,ℓM

is the partial amplitude corresponding to the permutation of the M−1 external
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legs fixing the first leg. The soft limit of [185, Eq. (3.32)] transforms to〈
O1,−1(z0, z̄0)

M

∏
n=1

O∆n,ℓn (zn, z̄n)

〉

=
M

∑
i=1

1
z̄0 − z̄i

〈
O∆1,ℓ1 (z1, z̄1) . . .O∆i,ℓi (zi, z̄i) . . .O∆n,ℓn (zn, z̄n)

〉 (3.57)

Using this and following the calculations on previous sections, we easily see that〈
G(z)

M

∏
n=1

O∆n,ℓn (zn, z̄n)

〉
=−

M

∑
i=1

1
z− zi

〈
O∆1,ℓ1 (z1, z̄1) . . .O∆i,ℓi (zi, z̄i) . . .O∆n,ℓn (zn, z̄n)

〉
〈

G(z̄)
M

∏
n=1

O∆n,ℓn (zn, z̄n)

〉
=−

M

∑
i=1

1
z̄− z̄i

〈
O∆1,ℓ1 (z1, z̄1) . . .O∆i,ℓi (zi, z̄i) . . .O∆n,ℓn (zn, z̄n)

〉
(3.58)

This gives the OPE

G(z)O∆,ℓ(w, w̄) =
1

w− z
O∆,ℓ(w, w̄)

G(z̄)O∆,ℓ(w, w̄) =
1

w̄− z̄
O∆,ℓ(w, w̄).

(3.59)

The OPEs of Sections 3.2.2, 3.2.2 and 3.2.2 remain the same without the gauge indices. Finally,

we see that due to the absence of gauge factors f abc, the OPE of the new current

G(z, z̄) = : G(z)G(z̄)−G(z̄)G(z) :

is regular: 〈
G(z, z̄)

M

∏
n=1

O∆n,ℓn (zn, z̄n)

〉
∼ regular. (3.60)

To find out the algebra, we Laurent expand the currents:

G(z) = ∑
m∈Z

Gm

zm+1 , G(z̄) = ∑
n∈Z

Gn

z̄n+1 (3.61)

where,

Gm =
1

2πi

∮
dz zmG(z), Gn =

1
2πi

∮
dz̄ z̄nG(z̄). (3.62)
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The algebra remains the same as in Eq. (3.54) except that now the commutator

[Gm,Gn] = 0,

as can easily be verified using the OPE in Eq. (3.59) and following the same method as in the

proof of Eq. (3.50). We collect the algebra here for completeness:

[
Gm,Pk,l

]
=
[
Gm,Pk,l

]
= 0[

Lm,Gn
]
=
[
Lm,Gn

]
= 0

[Gm,Gn] =
[
Gm,Gn

]
=
[
Gm,Gn

]
= 0

[Gm,Ln] = mGm+n[
Gm,Ln

]
= mGm+n.

(3.63)

From the algebra above and the algebra of supertranslations and superrotations, we conclude

that the extended bms4 algebra of EM-theory has the structure of semidirect sum of superrota-

tions with the direct sum of the abelian algebras of supertranslations and u(1)-gauge transfor-

mations [153]:

embms4 = Superrotations⊎ [Supertranslations⊕u(1)-gauge transformations] .

We remark that the asymptotic algebra calculated using the methods of [153] only gives the

global Lorentz transformations although we have recovered the complete local superrotations

algebra using our methods.

3.5 Conclusions and Open Problems

In this chapter, we have used the CCFT technique to compute the asymptotic symmetry alge-

bra of EYM and EM theories in four spacetime dimensions. We defined the celestial conformal

operators corresponding to the symmetry currents of graviton and gauge boson fields of the

bulk theory and computed their OPEs using the well known soft and collinear limits [122]. The

resultant correlators, in their singular (OPE) limit gives the bulk scattering amplitudes where

one or more of the incoming particles are soft. Using the standard methods of 2D CFT we

computed the symmetry algebra of modes of these current operators, that finally gives us the

asymptotic symmetry algebra of the bulk theory. The asymptotic symmetry algebra of the EM
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theory is obtained from that of the EYM theory, by setting the non-abelian structure constants

to zero value. These give us the extended bms4 symmetry algebra, in presence of non-abelian

and abelian spin 1 current. In the case of EYM theory, due to its non-abelian structure, a com-

posite current conformal operator playes an important role. Our results match with the known

results in literature [153, 353] upto a generator redefinition. This bolsters the proposal of Taylor

et. al. [7, 185, 186, 344, 353, 354] of using celestial CFT correlators to compute asymptotic

symmetry algebra of flat field theories.

Recently, the CCFT approach has been extended to calculate the asymptotic symmetry al-

gebra of N = 1 supergravity theory [7]. The asymptotic symmetry algebra, in this case, is

an infinite dimensional extension of the bms4 algebra by the fermionic current modes. This

work made use of supersymmetric ward identities to extract the soft and collinear limits of

conformal currents associated with gravitons and gravitinos. It would be interesting to extend

this approach to other four-dimensional N > 1 supersymmetric field and gravity theories. In

N > 1 supersymmetric theories, due to the presence of R-charges, it is expected that the re-

sultant extension of the asymptotic algebra will be “nontrivial". One prime ingredient of the

CCFT approach is the soft and collinear limits of the (super)conformal operators corresponding

to the particle excitations in the theory. Thus, the extension to N > 1 case requires the study

of soft and collinear singularities in those theories. Such a study appeared in [221] for N = 4

Super Yang-Mills theory. It would be interesting to use their results for finding the asymptotic

symmetry algebra for N = 4 Super Yang-Mills theory. However, an even more interesting

scenario would be to study the extension of the BMS algebra for supergravity theories with

N > 1 supersymmetry. One such candidate is the N = 8 supergravity (I will do the complete

asymptotic analysis in Chapter 5), which is related to N = 4 Super Yang-Mills theory via the

double copy relations, and hence, an analysis of soft and collinear limits would be tractable in

this case.

In the next chapter, I will report these using the double copy relations, keeping the motiva-

tion for the symmetry construction in N = 8 supergravity in mind.
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CHAPTER 4

SOFT AND COLLINEAR LIMITS USING DOUBLE COPY

FORMALISM

The work mentioned in this chapter was conducted in collaboration with Nabamita Banerjee

and Ranveer K. Singh, JHEP 04 (2023), published on 26th April 2023.

4.1 Introduction

Although the dynamics in gravity and the gauge theory are different, we can establish relations

between these two. The one well-known relation is in the context of AdS/CFT correspondence,

where we have the relations between the weakly coupled gravity and strongly coupled quantum

field theory. Here, we will be specific to the weak coupling regime only, which is better de-

scribed by the recently developed in-hand technique of Double copy formalism. A brief review

of the formalism is given in section 1.5, showing the duality using this multiplicative bilinear

operation.

As we know, double copy formalism is well-suited to construct on-shell scattering ampli-

tudes in gravity theories from on-shell amplitudes in gauge theories. However, there have been

off-shell developments for double-copy constructions in the context of field theory. The co-

variant fields in both gauges get double-copied to give rise to gravity fields, which give rise to

the map at the level of Lagrangian [355–360]. As an application to the perturbative classical

gravity, the off-shell methods are applied to worldline effective field theories [361–369]. Some

advancements are in the case of perturbative double copies of the classical fields, which are

generalizations for the on-shell KLT relations [101, 370–375]. Considering the exact solutions

of the general relativity to be Schwarzschild and Kerr black holes [376], we have Kerr-Schild

Double copy [377–379] and Weyl double copy [380, 381] as some of the exact double copy

formulations in classical gravity. These results hint towards the geometric formulation of the

theory of general relativity beyond the realm of perturbative analysis [382].

This chapter focuses on the on-shell methods of the scattering amplitudes and is explicitly

dedicated to the low-energy (IR) sectors, like soft and collinear sectors of the scattering ampli-

tudes in both gauge and gravity theories. Here, we calculate the soft and collinear limits of all

possible helicity combinations in N = 8 supergravity using the known double copy relation to
75



Chapter 4. Soft and Collinear Limits Using Double Copy Formalism

N = 4 SYM. General formulas for the double copy of amplitudes exist in literature [216, 217],

but to our knowledge, they have not been worked out explicitly.

Other than the case reviewed in this thesis, in the case of maximally supersymmetric the-

ories, there are other double copy relations successfully incorporated in different theories, like

in the effective theory of the Non-Linear Sigma Models (NLSM) [383–385]. Scattering ampli-

tudes in theories with extended N ≥ 4 supersymmetry are given in terms of the double copy

relations involving N = 4 super Yang-Mills (SYM), Yang-Mills (YM) theory or other SYM

theories [386]. For a review of the web of theories at the tree and loop level of the quantum

amplitudes, the reader must visit the work by Bern et al. [387].

In Section 4.2, we briefly review soft and collinear limits in N = 4 SYM, which we use later

in the chapter. Double copy and the relevant formula relating to the amplitudes are reviewed

in Section 1.5.1. In Section 4.3, we recall some basic facts about N = 8 supergravity and state

our conventions for its factorization into a pair of N = 4 SYM theories. Finally, in Sections 4.4

and 4.5, we record the explicit soft and collinear limits of supergravity amplitudes. In the main

body, we have tabulated the collinear limits of the amplitudes with the appropriate R-symmetry

indices, and the detailed calculations have been postponed to the appendices for reference. The

appendices also include spinor-helicity formalism and a list of computational results.

4.2 Soft and Collinear Limits in N = 4 SYM

As detailed in the introduction, in this chapter, we shall be studying the interesting limits of

supergravity amplitudes using double copy relations. For this purpose, we use N = 4 SYM

as a machinery to find our desired results for gravity. Let us briefly recall some of the prime

properties of N = 4 SYM. There are 16 different fields in N = 4 SYM, all of which can

be packaged in a single superfield. Let {ηa}4
a=1 be the Grassmann odd coordinates on the

superspace. Then the superfield for N = 4 SYM can be written as

Ψ(p,η) =G+(p)+ηaΓ
a
+(p)+

1
2!

ηaηbΦ
ab(p)

+
1
3!

ε
abcd

ηaηbηcΓ
−
d (p)+

1
4!

ε
abcd

ηaηbηcηdG−(p)
(4.1)

where G±(p) denote positive and negative helicity gluons, Γa
+,Γ

−
a denote positive and nega-

tive helicity gluinos respectively and Φab denotes the scalars. The superamplitude of n such
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superfields is then given by the n-point correlation function

An({p1,η
1}, . . .{pn,η

n})≡ ⟨Ψ1(p1,η
1) . . .Ψn(pn,η

n)⟩. (4.2)

We sometimes suppress the momenta pi and superspace Grassmann coordinates η i and sim-

ply write An(1,2, . . . ,n). Expanding both sides in η and comparing, one gets the scattering

amplitude of all the component fields. Next, we find the soft and collinear limits of the super-

amplitude. We begin with the soft theorem following [113]:

An (· · · ,a,s,b, · · ·)
ps→0−→ SoftSYM (a,s,b)An−1(· · · ,a,b, · · ·), (4.3)

where ps is the momenta of the soft superfield and a,b are the adjacent superfields. The soft

factor SoftSYM (a,s,b) is given by [214]

SoftSYM
hol (a,s,b) =

1
ε2 Soft(0)SYM

hol (a,s,b)+
1
ε

Soft(1)SYM
hol (a,s,b). (4.4)

where (0) and (1) indicate the leading and subleading terms. Let us explain the above notation.

We associate a pair of spinors
(
hs, h̃s

)
with every soft momenta ps. The limit

(
hs, h̃s,η

s)→(
εhs, h̃s,η

s)with ε → 0 and hs some fixed spinor (namely hs → 0) is known as the holomorphic

soft limit. The holomorphic soft factor is then given by [214]

Soft(k)SYM
hol (a,s,b) =

1
k!

⟨ab⟩
⟨as⟩⟨sb⟩

[
⟨sa⟩
⟨ba⟩

(
h̃α̇

s
∂

∂ h̃α̇
b
+(ηs)c

∂

∂ (ηb)c

)
+

⟨sb⟩
⟨ab⟩

(
h̃α̇

s
∂

∂ h̃α̇
a
+(ηs)c

∂

∂ (ηa)c

)]k

.

(4.5)

Similarly the limit
(
hs, h̃s,η

s)→ (
hs,ε h̃s,η

s) with h̃s a fixed spinor (namely h̃s → 0) is known

as the anti-holomorphic soft limit. The anti-holomorphic soft factor is given by

Soft(k)SYM
anti-hol (a,s,b) =

1
k!

[ab]
[as][sb]

δ
4
(

η
s +

[as]
[ab]

η
b +

[sb]
[ab]

η
a
)[

[sb]
[ab]

hα
s

∂

∂hα
a
+

[as]
[ab]

hα
s

∂

∂hα
b

]k

(4.6)

The physical soft limit ps → 0 is equivalent to considering both hs, h̃s → 0 simultaneously.

Thus, in the physical soft limit, the soft factor splits as the sum of holomorphic as well as the

anti-holomorphic soft factors. We use these results in Section 4.5 to compute soft limits in

supergravity.
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Next, we discuss the collinear limits. In the collinear limit, we take the momenta of two

adjacent superfields p1 and p2 to be collinear. Under this limit, the two subfields can fuse to

give another superfield with momentum p12 = p1 + p2. We parametrize the momenta of the

collinear superfields as

p1 = zp12, p2 = (1− z)p12, (4.7)

where z corresponds to the combined momentum p12 on the celestial sphere CS2. Since p1 +

p2 = p12, we see that, for massless fields, the collinear limit p1||p2 implies p1 · p2 ∝ p2
1 = 0

which is equivalent to the condition p2
12 → 0. Now the collinear limit in N = 4 SYM is given

by [126, 221]

An(1,2,3, · · · ,n)
p2

12→0
−→

2

∑
l=1

∫
d4

η
p12 Split1−l (1,2, p12)An−1 (p12,3, · · · ,n) . (4.8)

The l = 1,2 terms in the collinear limits are called the helicity-preserving and helicity-decreasing

processes. The collinear singularity is contained in the split factors. The split factor of the he-

licity preserving process is given by [126]

Split0
(
z;η

1,η2,η p12
)
=

1√
z(1− z)

1
⟨12⟩

4

∏
a=1

(
η

p12
a −

√
zη

1
a −

√
1− zη

2
a

)
. (4.9)

Whereas for the helicity-decreasing process, the split factor is given by [126]

Split−1
(
z;η

1,η2,η p12
)
=

1√
z(1− z)

1
[12]

4

∏
a=1

(
η

1
a η

2
a −

√
1− zη

1
a η

p12
a +

√
zη

2
a η

p12
a

)
. (4.10)

The integral over η p12 can be performed using general results of Grassmann integration.1 Here

∫
dη

p12
a

4

∏
a=1

(
η

1
a η

2
a −

√
1− zη

1
a η

p12
a +

√
zη

2
a η

p12
a
)

f (η p12
a )

= δ
(4)
(√

1− zη
1
a −

√
zη

2
a

)
f
(

η2
a√

1− z

)
,

(4.11)

1As an example for any function f (η) we have [221]

∫
d4

η
p

δ
(4) (η p −η) f (η p) =

∫
d4

η
p

4

∏
a=1

(η p
a −ηa) f (η p) = f (η).

where, δ (4)(η p −η) = ∏
4
a=1
(
η

p
a −ηa

)
.
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Using these, we express the collinear limit (4.8) as

An(1,2,3, · · · ,n)
p2

12→0
−→ 1√

z(1− z)

1
[12]

δ
(4)
(√

1− zη
1
a −

√
zη

2
a

)
An−1

(
{p12,

η2
a√

1− z
},3, · · · ,n

)
+

1√
z(1− z)

1
⟨12⟩

An−1({p12,
√

zη
1
a +

√
1− zη

2
a},3, · · · ,n).

(4.12)

Expanding both sides in η1 and η2, we can get collinear limits of the component fields. For

the collinear limit of component fields, we use the following notation:

An(1h1,2h2, . . . ,n)
1||2−→ ∑

h
SplitSYM

−h (z,1h1 ,2h2)An−1(ph, . . . ,n), (4.13)

where An is the amplitude of n different fields in the theory, and the sum is over all helicities in

the theory. Note that the split factor is trivial for helicities h, which does not have corresponding

interaction with h1 and h2. The split also satisfies the conjugation relation [126]

Split−h

(
z;ah1,bh2

)
= Split+h

(
z;a−h1,b−h2

)
|[ab]↔⟨ab⟩ (4.14)

The split factor of component fields in SYM has two parts: the kinematic part and the index

structure part. The kinematic part only depends on the momenta of the collinear particles, while

the index structure consists of the SU(4) R-symmetry indices of the component fields. As indi-

cated earlier, one can compute the kinematic part of the split factors for various combinations

of helicities by expanding both sides of (4.12) in η1,η2 and then comparing the coefficients.

This has been done using Mathematica. The non-trivial split factors for collinear gluons are:

SplitSYM
+1

(
z,a+1,b+1)= 0, SplitSYM

−1
(
z,a+1,b+1)= 1√

z(1− z)

1
⟨ab⟩

,

SplitSYM
+1

(
z,a−1,b+1)=

√
z3

1− z
1

⟨ab⟩
, SplitSYM

+1
(
z,a+1,b−1)= (1− z)2√

z(1− z)

1
⟨ab⟩

.

(4.15)

The split factor for collinear gluinos and scalars are:

SplitSYM
0

(
z,a+

1
2 ,b+

1
2

)
=

1
⟨ab⟩

, SplitSYM
+1

(
z,a+

1
2 ,b−

1
2

)
=

(1− z)
⟨ab⟩

,

SplitSYM
+1

(
z,a−

1
2 ,b+

1
2

)
=

z
⟨ab⟩

, SplitSYM
1

(
z,a0,b0)=√z(1− z)

1
⟨ab⟩

.

(4.16)
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Finally, the split factor for mixed helicities are

SplitSYM
+ 1

2

(
z,a−

1
2 ,b+1

)
=

z√
(1− z)

1
⟨ab⟩

, SplitSYM
+ 1

2

(
z,a+1,b−

1
2

)
=

1− z√
z

1
⟨ab⟩

,

SplitSYM
− 1

2

(
z,a+

1
2 ,b+1

)
=

1√
(1− z)

1
⟨ab⟩

, SplitSYM
− 1

2

(
z,a+1,b+

1
2

)
=

1√
z

1
⟨ab⟩

,

SplitSYM
0

(
z,a0,b+1)=√ z

1− z
1

⟨ab⟩
, SplitSYM

0
(
z,a+1,b0)=√1− z

z
1

⟨ab⟩
,

SplitSYM
1
2

(
z,a0,b+

1
2

)
=
√

z
1

⟨ab⟩
, SplitSYM

1
2

(
z,a+

1
2 ,b0

)
=
√

(1− z)
1

⟨ab⟩
.

(4.17)

All the other split factors can easily be obtained from Eq. (4.14). We now list the index structure

part of the split factors for various component fields. We obtain it by expanding both sides of

(4.12) in η1 and η2 and comparing the coefficients. Some of the index structures have been

worked out in [221]. We complete the list here. Note that the index structure in the collinear

limit of a gluon with any other component field is trivially determined; hence, we omit them

from the table below.

Collinear fields Resulting index structure

Γa
+,Γ

b
+ Φab

Γ−
a ,Γ

−
b

1
2!εabcdΦcd

Γa
+,Γ

−
b δ a

b G±

Γa
+,Φ

bc εabcdΓ
−
d

Γ−
a ,Φ

bc 2!δ [b
a Γ

c]
+

Φab,Φcd εabcdG±

Table 4.1: Index structure in collinear limit in N = 4 SYM
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4.3. N=8 Supergravity

4.3 N=8 Supergravity

In this section, we briefly review the field contents and basic properties of the theory and also

establish notations that we follow in the remainder of the chapter.

Let {ηA}8
A=1 be the Grassmann coordinates on the N = 8 superspace. The degrees of N = 8

supergravity for an on-shell superfield is defined as

Ψ(p,η) = H+(p)+ηAψ
A
+(p)+ηABGAB

+ (p)+ηABCχ
ABC
+ (p)

+ηABCDΦ
ABCD(p)+ η̃

ABC
χ
−
ABC(p)+ η̃

ABG−
AB(p)+ η̃

A
ψ

−
A (p)+ η̃H−(p),

(4.18)

where we have introduced the notation

ηA1...An ≡
1
n!

ηA1 . . .ηA2

η̃
A1...An ≡ ε

A1...AnB1...B8−nηB1...B8−n

η̃ ≡
8

∏
A=1

ηA.

(4.19)

The fields H± represent graviton, GAB
+ and G−

AB represent gluons, ψA
+ and ψ

−
A represent grav-

itinos, χABC
+ and χ

−
ABC represent gluinos and finally ΦABCD represent the real scalars. The

(sub)super scripts ± denote the positive and negative helicity of various fields. The superam-

plitude is then defined by

Mn({p1,η
1}, . . .{pn,η

n}) = ⟨Ψ1(p1,η
1) . . .Ψn(pn,η

n)⟩. (4.20)

We now explain the factorization of states in supergravity into tensor product of states in super

Yang-Mills. We begin by counting the degrees of freedom in the two theories. It is summarised

in Table 4.2 below.

The precise factorization of fields and operators are given in [215]. We summarise the

factorization in Table 4.3 below. The second factor of N = 4 SYM is written with a tilde to

emphasize that the factors of the two gauge theories are not identical. The following notation

is used in the table below and in the rest of the chapter: uppercase indices A,B,C,D, ... ∈

{1, . . . ,8} will denote indices in N = 8 supergravity, lower case indices a,b,c,d ∈ {1,2,3,4}

correspond to first SYM factor and r,s, t,u ∈ {5,6,7,8} correspond to second SYM factor.

In particular, in equations where both upper and lower case indices have been used, we will
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Chapter 4. Soft and Collinear Limits Using Double Copy Formalism

N = 8 Supergravity (N = 4 SYM) ⊗ (N = 4 SYM)

70 Scalars 36(0⊗0);1(−1⊗+1);1(+1⊗−1);16(+1
2 ⊗−1

2);16(−1
2 ⊗+1

2)

112 Gravi-photinos (±) 48(±1
2 ⊗0);48(0⊗±1

2);8(±1
2 ⊗∓1);8(±1⊗∓1

2)

56 Graviphotons (±) 12(±1⊗0);16(+1
2 ⊗+1

2);16(−1
2 ⊗−1

2)

16 Gravitinos (±) 8(±1
2 ⊗±1);8(±1⊗±1

2)

2 Gravitons (±) 2(±1⊗±1)

Table 4.2: Factorisation of N = 8 supergravity states into N = 4 super Yang-Mills states

assume A = a and A = r and so on when 1 ≤ A ≤ 4 and 5 ≤ A ≤ 8, respectively. Further note

that the scalars in supergravity and super Yang-Mills satisfy the self duality relation, [215]

ΦABCD =
1
4!

α8εABCDEFGHΦ
EFGH

Φab =
1
2!

α4εabcdΦ
cd

Φ̃rs =
1
2!

α̃4εrstuΦ
tu

(4.21)

with α4, α̃4,α8 ∈ {±1} along with the consistency condition [215, Eq. 2.12],

α4α̃4 = α8. (4.22)

and εAB...H is the Levi-Civita tensor in 8 dimensions and εabcd,εrstu are Levi-Civita tensor in

4 dimensions. Note that since 5 ≤ r,s, t,u ≤ 8, εrstu is defined using permutations of 5,6,7,8.

Using this factorization, we can find the collinear limit of any two states in N = 8 supergravity.

The possible choices of the self-duality factors (α4, α̃4,α8) are (1,1,1),(1,−1,−1),(−1,1,−1),(−1,−1,1).

Based on possible choices of the self-duality factors, we have four different ways of getting the

supergravity amplitudes via double copy.

4.4 Collinear limits in N = 8 supergravity

In this section, we compute the collinear limits using the component field formalism. The

double copy relation of collinear limits in component formalism is given by

Mn(1h1,2h2, . . . ,n)
1||2−→ ∑

h
SplitSG

−h(z,1
h1,2h2)Mn−1(ph, . . . ,n), (4.23)
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4.4. Collinear limits in N = 8 supergravity

H+ = G+G̃+ H− = G−G̃−

Ψa
+ = Γa

+G̃+ Ψ−
a = Γ−

a G̃−

Ψr
+ = G+Γ̃r

+ Ψ−
r = G−Γ̃−

r

G+
ab = ΦabG̃+ G−

ab = ΦabG̃−

G+
ar = Γa

+Γ̃r
+ G−

ar =−Γ−
a Γ̃−

r

G+
rs = G+Φ̃rs Ḡ−

rs = G−Φ̃rs

χabc
+ = α4εabcdΓ

−
d G̃+ χ

−
abc =−α4εabcdΓd

+G̃−

χabr
+ = ΦabΓ̃r

+ χ
−
abr = ΦabΓ̃−

r

χars
+ = Γa

+Φ̃rs χ−
ars = Γ−

a Φ̃rs

χrst
+ = α̃4εrstuG+Γ̃−

u χ
−
rst =−α̃4εrstuG−Γ̃u

+

Φabcd = α4εabcdG−G̃+ Φabcd = α4εabcdG+G̃−

Φabcr = α4εabcdΓ
−
d Γ̃r

+ Φabcr = α4εabcdΓd
+Γ̃−

r

Φabrs = ΦabΦ̃rs Φabrs = ΦabΦ̃rs

Φarst = α̃4εrstuΓa
+Γ̃−

u Φarst = α̃4εrstuΓ−
a Γ̃u

+

Φrstu = α̃4εrstuG+G̃− Φrstu = α̃4εrstuG−G̃+

Table 4.3: Factorisation of states in supergravity into states in super Yang-Mills
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Chapter 4. Soft and Collinear Limits Using Double Copy Formalism

where the split factor SplitSG
−h(z,1

h1,2h2) is given in terms of the split factors in N = 4 super

Yang-Mills theory as follows:

SplitSG
−(h+h̃)

(
z,1h1+h̃1 ,2h2+h̃2

)
=−s12 ×SplitSYM

−h

(
z,1h1,2h2

)
×SplitSYM

−h̃

(
z,2h̃2,1h̃1

) (4.24)

where (h+ h̃) is the factorisation of N = 8 supergravity state with total spin h+ h̃ in terms of

two copies of N = 4 super Yang-Mills states with spins h, h̃ respectively according to Table

4.3 and s12 = ⟨12⟩ [21]. The sum over all N = 8 supergravity states is interpreted as a double

sum over a tensor product of N = 4 SYM states [216]. The calculation of collinear limit then

involves two steps:

1. Calculate the split factors for all possible factorization channels, that is, for all possible

values of spin and helicity states h in N = 8 supergravity. This can be done in such that

the factorization h = h1 + h2 into different spin and helicity states in N = 4 SYM from

Table 4.3 gives nontrivial split factors. In general, one only needs to calculate half of all

possible combinations of helicities. The remaining split factors can be calculated using

Split−
(

z;ah1,bh2
)
= Split+

(
z;a−h1,b−h2

)
|[ab]↔⟨ab⟩ (4.25)

2. Write the collinear limit of amplitudes by consistently matching the R-symmetry factors

using Table 4.1, which is non-trivial in the case of N > 1 theories.

4.4.1 Collinear limits of like spins

Here, we compute the collinear amplitudes from the splits for states of the same spin. We will

show the computation for some cases and summarise the results for the rest in tabular form and

refer the reader to Appendix B.2.1 for all the details of the computations. Moreover, we only

summarise the collinear limits for independent cases not related by Eq.(4.25).

Gravitons:

When both collinear gravitons are of the same helicity (positive or negative), then from Table
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4.4. Collinear limits in N = 8 supergravity

Mn
(
1+2,2+2, · · · ,n

) ω2
p

ω1ω2

z̄12
z12

Mn−1
(

p+2, . . . ,n
)

Mn
(
1−2,2−2, · · · ,n

) ω2
p

ω1ω2

z12
z̄12

Mn−1
(

p−2, . . . ,n
)

Mn
(
1+2,2−2, . . . ,n

) ω3
1

ω2
pω2

z̄12
z12

Mn−1
(

p−2,3, . . . ,n
)
+

ω3
2

ω2
pω1

z12
z̄12

Mn−1
(

p+2,3, . . . ,n
)

Table 4.4: Amplitude corresponding to two collinear gravitons

4.3, we see that

SplitSG
−(h+h̃)

(
z,1±2,2±2)=−s12 ×SplitSYM

−h
(
z,1±1,2±1)

×SplitSYM
−h̃

(
z,2±1,1±1) .

A similar factorization is true for opposite helicities. Thus split factors in N = 8 supergravity

for two collinear gravitons is

SplitSG
+2
(
z,a+2,b+2)= 0 = SplitSG

−2
(
z,a−2,b−2) ,

SplitSG
−2
(
z,a+2,b+2)=− 1

z(1− z)
[ab]
⟨ab⟩

, SplitSG
+2
(
z,a−2,b−2)=− 1

z(1− z)
⟨ab⟩
[ab]

SplitSG
+2
(
z,a−2,b+2)=− z3

(1− z)
[ab]
⟨ab⟩

, SplitSG
−2
(
z,a−2,b+2)=−(1− z)3

z
⟨ab⟩
[ab]

.

(4.26)

Writing the momenta of the collinear particles as pi = ωiqi, i = 1,2, the momenta along the

collinear channel is p = p1 + p2 = ωpqp with ωp = ω1 +ω2 and we can write

p1 = zp, p2 = (1− z)p. (4.27)

Note that qp = q1 = q2 and hence

z =
ω1

ωp
, (1− z) =

ω2

ωp

With this parametrization, the collinear limits can be tabulated as, Here in LHS, 1,2, . . . ,n refers

to external particles with momenta p1, p2, . . . , pn, and p1 is taken collinear to p2 according to

the parametrization in Eq. (4.27). We will carry this notation throughout the chapter.

Note that the collinear limit of two negative helicity gravitons from the collinear limit of

two positive helicity gravitons by flipping the helicities throughout and z12 ↔ z̄12. This is rem-

iniscent of Eq.(4.25).
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Chapter 4. Soft and Collinear Limits Using Double Copy Formalism

Gravitinos:

The non-trivial split factors in N = 8 Supergravity for two collinear gravitinos are given by

SplitSG
−1

(
z,1

1
2+1,2

1
2+1
)
=− 1√

z(1− z)

[12]
⟨12⟩

, SplitSG
−1

(
z,1

1
2+1,21+ 1

2

)
=− 1√

z(1− z)

[12]
⟨12⟩

SplitSG
−2

(
z,1

1
2+1,2−

1
2−1
)
=−

√
z5

(1− z)
⟨12⟩
[12]

, SplitSG
+2

(
z,1

1
2+1,2−

1
2−1
)
=−

√
(1− z)5

z
[12]
⟨12⟩

(4.28)

We can calculate other split factors using Eq.(4.25). The factorization of R-symmetry indices

has the form. 
(
a; 3

2

)
=
(
a; 1

2

)
⊗1(

r; 3
2

)
= 1⊗

(
r; 1

2

)
Corresponding to the above two factorization the amplitudes following Eq.(4.23) and Eq.(4.24),

can be combined and written in the table below. For details, we refer the readers to section B.2.1

in the Appendix.

Mn

(
1A;+ 3

2 ,2B;+ 3
2 , · · · ,n

)
ωp√
ω1ω2

z̄12
z12

Mn−1
(

pAB;+1, · · · ,n
)

Mn

(
1A;+ 3

2 ,2
− 3

2
B , · · · ,n

)
δ A

B
ω

5
2

2

ω

1
2

1 ω2
p

z̄12
z12

Mn−1
(

p−2, · · · ,n
)
+δ A

B
ω

5
2

1

ω

1
2

2 ω2
p

z12
z̄12

Mn−1
(

p+2, · · · ,n
)

Table 4.5: Amplitude corresponding to two collinear gravitinos

Gravi-photons:

Using the factorisation in Eq.(4.24) the non-trivial split factors for two collinear Graviphotons

is given in Appendix B.1. The calculation of collinear limits is done in Appendix B.2.1. The

result is recorded in the table below.

The R-symmetry index factorizes as follows:
(ab;1) = (ab;0)⊗1

(ar;1) =
(
a, 1

2

)
⊗
(
r; 1

2

)
(rs;1) = 1⊗ (rs;0)

From the above factorisation we can combine all of the non-trivial amplitudes for 1 ≤ A,B ≤ 8
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4.4. Collinear limits in N = 8 supergravity

as,

Mn
(
1AB;+1,2CD;+1, · · ·

) z̄12
z12

×Mn−1
(

pABCD;0, · · ·
)

Mn
(
1AB;+1,2−1

CD, · · ·
)

−δ AB
CD

[
ω2

2
ω2

p

z̄12
z12

×Mn−1
(

p−2, · · ·
)
+

ω2
1

ω2
p

z12
z̄12

×Mn−1
(

p+2, · · ·
)]

Table 4.6: Amplitude corresponding to two collinear graviphotons

In writing the collinear limit of opposite helicity graviphotons, we made a choice of self-

duality factors α4 = α̃4 =−1,α8 = 1. This choice is unique and motivated by our aim to make

the R-symmetry indices consistent in both sides of the amplitude calculations. See Appendix

B.2 for details.

Graviphotinos:

Following the factorisation in Eq. (4.24), the non-trivial split factors for this channel in N = 8

supergravity are given in Appendix B.2.

The factorisation of the R-symmetry indices is as follows:


(
abr; 1

2

)
= (ab;0)⊗

(
r; 1

2

)
(
ars; 1

2

)
=
(
a; 1

2

)
⊗ (rs;0)


(
rst; 1

2

)
=−εrstu(1⊗ (u;−1

2))(
abc; 1

2

)
=−εabcd((d;−1

2)⊗1)
(sum over u,d)

The amplitudes corresponding to the above factorisation channels are summarised as follows

Mn

(
1ars;+ 1

2 ,2btu;+ 1
2 , · · ·

)
εrstuεabcd

√
ω1ω2
ωp

z̄12
z12

×Mn−1
(

p−1
cd , · · ·

)
Mn

(
1ars;+ 1

2 ,2bct;+ 1
2 , · · ·

)
εabcdεrstu

√
ω1ω2
ωp

z̄12
z12

×Mn−1
(

p−1
du , · · ·

)
Mn

(
1rst;+ 1

2 ,2abc;+ 1
2 , · · ·

)
εrstuεabcd

√
ω1ω2
ωp

z̄12
z12

×Mn−1
(

p−1
ud , · · ·

)
Mn

(
1ars;+ 1

2 ,2
− 1

2
btu , · · ·

)
εtuvwεrsvwδ a

b

[
ω

3
2

1 ω

1
2

2
ω2

p

z12
z̄12

Mn−1
(

p+2, · · ·
)
+

ω

3
2

2 ω

1
2

1
ω2

p

z̄12
z12

Mn−1
(

p−2, · · ·
)]

Table 4.7: Amplitude corresponding to two collinear graviphotinos

Scalars:
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The three possible channels are 0 = 0 ⊗ 0, 0 = ±1 ⊗∓1 and 0 = ±1
2 ⊗∓1

2 . We have the

non-trivial splits given in Appendix B.3.

The factorizations of R-symmetry indices are given by

(abrs;0) = (ab;0)⊗ (rs;0)

(abcd;0) =−εabcd(−1⊗1)

(rstu;0) =−εrstu(1⊗−1)(abcr;0) =−εabcd (d;−1
2

)
⊗ (r; 1

2)

(arst;0) =−εrstu(a; 1
2)⊗

(
u;−1

2

)
The factorised amplitudes are,

Mn
(
1abrs;0,2cdtu;0, · · ·

)
εabcdεrstu

[
ω1ω2

ω2
p

z12
z̄12

×Mn−1
(

p+2, · · ·
)
+ ω1ω2

ω2
p

z̄12
z12

×Mn−1
(

p−2, · · ·
)]

Mn
(
1abcd;0,2rstu;0, · · ·

)
εabcdεrstu

[
ω2ω1

ω2
p

z12
z̄12

×Mn−1
(

p+2, · · ·
)

ω1ω2
ω2

p

z̄12
z12

×Mn−1
(

p−2, · · ·
)]

Mn
(
1abcu;0,2drst;0, · · ·

)
εabcdεrstu

[
ω2ω1

ω2
p

z12
z̄12

×Mn−1
(

p+2, · · ·
)
+ ω1ω2

ω2
p

z̄12
z12

×Mn−1
(

p−2, · · ·
)]

Mn
(
1arst;0,2bcdu;0, · · ·

)
εrstuεabcd

[
ω2ω1

ω2
p

z12
z̄12

×Mn−1
(

p+2, · · ·
)
+ ω1ω2

ω2
p

z̄12
z12

×Mn−1
(

p−2, · · ·
)]

Table 4.8: Amplitude corresponding to two collinear scalars

4.4.2 Collinear limits of Mixed Spins

In this section, we list the collinear limit of states with different spins. The non-trivial split

factors are listed in Appendix B.1 and the detailed calculation is done in Appendix B.2.2.

Graviton-Gravitino:

The non-trivial split factors for this collinear pair are given in Appendix B.4.

Using different factorisation channels of the Gravitinos we have,
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Mn

(
1+2,2r;+ 3

2 , · · · ,n
)

ω

3
2
p

ω

1
2

2 ω1

z̄12
z12

×Mn−1

(
pr;+ 3

2 , · · · ,n
)

Mn

(
1+2,2

− 3
2

r , · · · ,n
)

ω

5
2

2

ω

3
2
p ω1

z̄12
z12

×Mn−1

(
p
− 3

2
r , · · · ,n

)
Mn

(
1+2,2a;+ 3

2 , · · · ,n
)

ω

3
2
p

ω

1
2

2 ω1

z̄12
z12

×Mn−1

(
pa;+ 3

2 , · · · ,n
)

Mn

(
1+2,2

− 3
2

a , · · · ,n
)

ω

5
2

2

ω

3
2
p ω1

z̄12
z12

×Mn−1

(
p
− 3

2
a , · · · ,n

)
Table 4.9: Amplitude corresponding to collinear graviton and gravitino

Graviton-Graviphoton:

The split factors are given in Appendix B.5. For 1 ≤ A,B ≤ 8 all the amplitudes corresponding

to different factorisation channels are summarised as

Mn
(
1+2,2−1

AB, · · · ,n
)
=

ω2
2

ω1ωp

z̄12

z12
×Mn−1

(
p−1

AB, · · · ,n
)

Graviton-Graviphotino:

Non-trivial split factors are given in Appendix B.6.

Mn

(
1+2,2abr;+ 1

2 , · · · ,n
) √

ω2ωp
ω1

z̄12
z12

×Mn−1

(
pabr;+ 1

2 , · · · ,n
)

Mn

(
1+2,2ars;+ 1

2 , · · · ,n
) √

ω2ωp
ω1

z̄12
z12

×Mn−1

(
pars;+ 1

2 , · · · ,n
)

Mn

(
1+2,2abc;+ 1

2 , · · · ,n
) √

ω2ωp
ω1

z̄12
z12

×Mn−1

(
pabc;+ 1

2 , · · · ,n
)

Mn

(
1+2,2rst;+ 1

2 , · · · ,n
) √

ω2ωp
ω1

z̄12
z12

×Mn−1

(
prst;+ 1

2 , · · · ,n
)

Mn

(
1+2,2

− 1
2

abr, · · · ,n
)

ω

3
2

2

ω

1
2
p ω1

z̄12
z12

×Mn−1

(
p
− 1

2
abr, · · · ,n

)
Mn

(
1+2,2

− 1
2

ars , · · · ,n
)

ω

3
2

2

ω

1
2
p ω1

z̄12
z12

×Mn−1

(
p
− 1

2
ars , · · · ,n

)
Mn

(
1+2,2

− 1
2

abc, · · · ,n
)

− ω

3
2

2

ω

1
2
p ω1

z̄12
z12

×Mn−1

(
p
− 1

2
abc, · · · ,n

)
Mn

(
1+2,2

− 1
2

rst , · · · ,n
)

− ω

3
2

2

ω

1
2
p ω1

z̄12
z12

×Mn−1

(
p
− 1

2
rst , · · · ,n

)
Table 4.10: Amplitude corresponding to collinear graviton and graviphotino
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Graviton-Scalar:

The non-trivial split factors are given in Appendix B.7. For all the factorisation channel for the

Scalars in N = 8 the split factors will remain the same. Hence

Mn

(
1+2,2ABCD;0, · · · ,n

)
=

ω2

ω1

z̄12

z12
×Mn−1

(
pABCD;0, · · · ,n

)
Gravitino-Graviphoton:

The split factors for this collinear pair are given in Appendix B.8. For any 1 ≤ A,B ≤ 8 we

have

Mn

(
1A;+ 3

2 ,2−1
BC, · · · ,n

)
=

ω2
2

ω
3
2
p ω

1
2
1

z̄12

z12
2!δ A

[B ×Mn−1

(
p
− 3

2
C]

, · · · ,n
)

Here [...] indicates antisymmetrized indices defined by

p[A1...An] :=
1
n! ∑

σ∈Sn

sign(σ) pAσ(1)...Aσ(n). (4.29)

Gravitino-Graviphotino:

The split factors are given in Appendix B.9.

Mn

(
1A;+ 3

2 ,2BCD;+ 1
2 , · · ·

) √
ω2
ω1

z̄12
z12

×Mn−1
(

pABCD;0, · · ·
)

Mn

(
1A;+ 3

2 ,2
− 1

2
BCD, · · ·

)
− ω

3
2

2

ωpω

1
2

1

z̄12
z12

×3δ A
(BMn−1

(
p−1

CD)
, · · ·
)

Table 4.11: Amplitude corresponding to collinear gravitino and graviphotino

Here (...) indicates symmetrized indices defined by

p(A1...An) :=
1
n! ∑

σ∈Sn

pAσ(1)...Aσ(n). (4.30)

Gravitino-scalar:

The splits are given in Appendix B.10.

Mn

(
1A;+ 3

2 ,2BCDE;0, · · · ,n
)
=− 1

3!
ε

ABCDEFGH ω2√
ω1ωp

z̄12

z12
×Mn−1

(
p
− 1

2
FGH , · · · ,n

)

Graviphoton-Graviphotino:
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The splits are in Appendix B.11.

Mn

(
1ab;+1,2cdr;+ 1

2 , · · · ,n
) √

ω2
ω1

z̄12
z12

×Mn−1
(

pABCD;0, · · ·
)

Mn

(
1ab;+1,2cdr; − 1

2
, · · · ,n

)
−δ ab

cd
ω

3
2

2

ω

3
2
p

z̄12
z12

×Mn−1

(
p
− 3

2
r , · · · ,n

)
Table 4.12: Amplitude corresponding to collinear graviphoton and graviphotino

Graviphoton-scalar:

The splits for this collinear pair are in Appendix B.12.

Mn
(
1ab;+1,2cdrs;0, · · · ,n

)
εabcdεrstu ω2

ωp

z̄12
z12

×Mn−1
(

p−1
tu , · · · ,n

)
Mn
(
1rs;+1,2abtu;0, · · · ,n

)
εrstuεabcd ω2

ωp

z̄12
z12

×Mn−1
(

p−1
cd , · · · ,n

)
Mn
(
1ar;+1,2bcst;0, · · · ,n

)
εabcdεrstu ω2

ωp

z̄12
z12

×Mn−1
(

p−1
du , · · · ,n

)
Mn
(
1ab;+1,2cde f ;0, · · · ,n

)
−εcde f εabgh ω2

ωp

z̄12
z12

×Mn−1

(
p−1

gh , · · · ,n
)

Mn
(
1rs;+1,2cde f ;0, · · · ,n

)
−εcde f εrstu ω2

ωp

z̄12
z12

×Mn−1
(

p−1
tu , · · · ,n

)
Mn
(
1ar;+1,2bcds;0, · · · ,n

)
−εabcdεrstu ω2

ωp

z̄12
z12

×Mn−1
(

p−1
tu , · · · ,n

)
Mn
(
1−1

ab ,2
cde f ;0, · · · ,n

)
−εcde f εabgh

ω2
ωp

z12
z̄12

×Mn−1
(

pgh;+1, · · · ,n
)

Mn
(
1−1

ar ,2
bcds;0, · · · ,n

)
−εbcdeδ s

r εae f g
ω1
ωp

z12
z̄12

×Mn−1
(

p f g;+1, · · · ,n
)

Mn
(
1−1

ar ,2
bcst;0, · · · ,n

)
−ω2

ωp

z12
z̄12

4!δ [b
a δ s

r Mn−1

(
ptc];+1, · · · ,n

)
Table 4.13: Amplitude corresponding to collinear graviphoton and scalar

Graviphotino-scalar:

The splits are given in Appendix B.13.
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Mn

(
1abr;+ 1

2 ,2cdst;0, · · · ,n
)

εabcdεrstu ω

1
2

1 ω2

ω

3
2
p

z̄12
z12

×Mn−1

(
p
− 3

2
u , · · · ,n

)
Mn

(
1abr;+ 1

2 ,2cstu;0, · · · ,n
)

−εabcdεrstu ω

1
2

1 ω2

ω

3
2
p

z̄12
z12

×Mn−1

(
p
− 3

2
d , · · · ,n

)
Mn

(
1ars;+ 1

2 ,2bctu;0, · · · ,n
)

εabcdεrstu ω

1
2

1 ω2

ω

3
2
p

z̄12
z12

×Mn−1

(
p
− 3

2
d , · · · ,n

)
Mn

(
1
− 1

2
ars ,2bctu;0, · · · ,n

)
−2!δ tu

rs
ω

1
2

1 ω2

ω

3
2
p

z12
z̄12

δ
[b
a ×Mn−1

(
pc];+ 3

2 , · · · ,n
)

Mn

(
1
− 1

2
ars ,2btuv 0, · · · ,n

)
−δ b

a ε tuvwεwrsx
ω

1
2

1 ω2

ω

3
2
p

z12
z̄12

×Mn−1

(
px;+ 3

2 , · · · ,n
)

Mn

(
1
− 1

2
rst ,2avwx;0, · · · ,n

)
−εrstuεvwxu ω

1
2

1 ω2

ω

3
2
p

z12
z̄12

×Mn−1

(
pa;+ 3

2 , · · · ,n
)

Mn

(
1
− 1

2
rst ,2uvwx;0, · · · ,n

)
−εrstyεuvwx ω

1
2

1 ω2

ω

3
2
p

z12
z̄12

×Mn−1

(
py;+ 3

2 , · · · ,n
)

Table 4.14: Amplitude corresponding to collinear graviphotino and scalar

4.5 Soft Limits in N=8 supergravity

To complete our study, we now move on to study the soft limit of supergravity amplitudes. In

particular, in this section, we will compute the soft limits of graviton and gravitinos up to sub-

subleading order. As explained earlier, for both holomorphic and antiholomorphic soft limits

for supergravity amplitudes, we have,

Mn+1 (Ψs,Ψ1, . . . ,Ψn)
ε→0
=

2

∑
k=0

1
ε3−kS

(k)Mn (Ψ1, . . . ,Ψn) (holomorphic soft limit)

Mn+1 (Ψs,Ψ1, . . . ,Ψn)
ε→0
=

2

∑
k=0

1
ε3−kS

(k)Mn (Ψ1, . . . ,Ψn) (antiholomorphic soft limit)

(4.31)

where in both cases the holomorphic and antiholomorphic soft limits are parametrized by ε → 0

for the soft superfield Ψs and S(k) and S(k) are soft operators corresponding to these limits.

4.5.1 Graviton soft limit

Recall that in the physical soft limit ps → 0 or equivalently hs, h̃s → 0, the leading soft factor

in SYM is given by the sum of leading soft factors in holomorphic and anti-holomorphic soft
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4.5. Soft Limits in N=8 supergravity

limit:

SoftSYM
leading (a,s,b) =

⟨ab⟩
⟨as⟩⟨sb⟩

+
[ab]

[as][sb]
δ

4 (ηs) (4.32)

As described in Section 1.5.1, we will use the double copy relation [113, Eq. 2.15]

1
ε3 Soft(0)SG +

1
ε2 Soft(1)SG +

1
ε

Soft(2)SG

=
n

∑
i=1

ε⟨si⟩[is]
(

1
ε2 Soft(0)SYM(i,s,a)+

1
2ε

Soft(1)SYM(i,s,a)
)2

.
(4.33)

Comparing the coefficients of ε powers, we get

Soft(0)SG =
n

∑
i=1

⟨si⟩[is]
[
Soft(0)SYM(i,s,a)

]2
Soft(1)SG =

n

∑
i=1

⟨si⟩[is]
[
Soft(0)SYM(i,s,a)×Soft(1)SYM(i,s,a)

]
Soft(2)SG =

1
4

n

∑
i=1

⟨si⟩[is]
[
Soft(1)SYM(i,s,a)

]2
(4.34)

Thus, the double copy relation gives the sum of leading, subleading, and sub-subleading soft

factors in supergravity in terms of the leading and subleading soft factors in SYM. It is clear

that the leading and subleading soft factors in supergravity are given by

SoftSG
leading =

n

∑
i=1

⟨si⟩[is]
(
[Soft(0)SYM

hol (i,s,a)]2 +[Soft(0)SYM
anti−hol(i,s,a)]

2) (4.35)

and

SoftSG
subleading =

n

∑
i=1

⟨si⟩[is]
[

Soft(0)SYM
hol (i,s,a)×Soft(1)SYM

hol (i,s,a)

+Soft(0)SYM
anti−hol(i,s,a)×Soft(1)SYM

anti−hol(i,s,a)
] (4.36)

We now substitute (4.5) and (4.6) into (4.35) and (4.36) to get the leading and subleading

soft factors in supergravity. Note that the nonholomorphic soft factor in SYM includes the

Grassmann delta function δ 4(η). So, while squaring the nonholomorphic soft factor of SYM,

the square of this delta function in double copy is interpreted as the Grassmann delta function

on N = 8 superspace: (
δ

4(ηa)
)2

= δ
8(ηA) (4.37)
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where the indices have the usual meanings with a running from 1 to 4 and A running from 1 to

8. The leading soft factor is then given by

SoftSG
leading (a,s,b) =

n

∑
i=1

(
[si]
⟨si⟩

⟨ai⟩2

⟨as⟩2 +
⟨si⟩
[si]

[ai]2

[as]2
δ

8(ηA)

)
(4.38)

We now evaluate the subleading soft limit. From (4.6) and (4.36) we have,

SoftSG
subleading

=
n

∑
i=1

⟨si⟩[is]

[
⟨ia⟩

⟨is⟩⟨sa⟩

{
1

⟨sa⟩

(
h̃α̇

s
∂

∂ h̃α̇
a
+η

s
A

∂

∂ηa
A

)
+

1
⟨is⟩

(
h̃α̇

s
∂

∂ h̃α̇
i
+η

A
s

∂

∂ηA
i

)}

+
[ia]

[is][sa]
δ

8
(

η
s +

[as]
[ab]

η
b +

[sb]
[ab]

η
a
)(

1
[is]

hα
s

∂

∂hα
i
+

1
[sa]

hα
s

∂

∂hα
a

)]

=
n

∑
i=1

⟨si⟩[is]

[
⟨ia⟩

⟨is⟩2⟨sa⟩

(
h̃α̇

s
∂

∂ h̃α̇
i
+η

s
A

∂

∂η i
A

)
+

[ia]
[is]2[sa]

δ
8
(

η
s +

[as]
[ab]

η
b +

[sb]
[ab]

η
a
)(

hα
s

∂

∂hα
i

)]

where we used the momentum conservation

∑
i
⟨si⟩[ia] = ∑

i
[si]⟨ia⟩= 0.

Note that in the soft superfield, ηs → 0 gives the positive helicity soft graviton and δ 8(ηs) gives

the negative helicity soft graviton. Thus we only retain these terms in the soft factor. Thus we

get

SoftSG
subleading (a,s,b) =

n

∑
i=1

[is]⟨ia⟩
⟨si⟩⟨sa⟩

h̃α̇
s

∂

∂ h̃α̇
i
+

⟨si⟩[ia]
[is][sa]

δ
8(ηs)hα

s
∂

∂hα
i

which is the sum of soft factors for positive and negative helicity soft graviton in pure gravity

[113, Eq. 2.9]. Note that in the above formula, the momenta pa acts as a reference vector

and hence can be taken to be any null vector r. This is an indication of the diffeomorphism

symmetry of gravity amplitudes. We can thus rewrite the soft factor as

SoftSG
subleading (a,s,b) =

n

∑
i=1

[is]⟨ir⟩
⟨si⟩⟨sr⟩

h̃α̇
s

∂

∂ h̃α̇
i
+

⟨si⟩[ir]
[is][sr]

δ
8(ηs)hα

s
∂

∂hα
i

(4.39)
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4.5.2 Leading soft gravitino limit

To calculate the soft limit of gravitinos, we use the results of [214]. Under the holomorphic

soft limit of the superfield, we have

Mn+1 (Ψs,Ψ1, . . . ,Ψn) =

(
1
ε3S

(0)+
1
ε2S

(1)+
1
ε
S(2)

)
Mn (Ψ1, . . . ,Ψn)+O

(
ε

0) . (4.40)

The leading soft factor2 is same with the one in pure gravity:

S(0) =
n

∑
i=1

[si]⟨ri⟩2

⟨si⟩⟨rs⟩2 = S(0). (4.41)

The sub-leading soft operator is given by

S(1) =
n

∑
i=1

[si]⟨ri⟩
⟨si⟩⟨rs⟩

(
λ̃sα̇

∂

∂ λ̃iα̇
+ηsA

∂

∂ηiA

)
= S(1)+ηsASA(1). (4.42)

where

SA(1) =
n

∑
i=1

[si]⟨ri⟩
⟨si⟩⟨rs⟩

∂

∂ηiA

Here, the leading soft gravitino operator involves the first order derivatives with respect to the

Grassmannian variables ηi’s. These term will preserves the total helicity as well as SU(8) R-

symmetry.

The sub-sub-leading soft factor is given by

S(2) = S(2)+ηsASA(2)+
1
2

ηsAηsBSAB(2) (4.43)

where

S(2) =
1
2

n

∑
i=1

[si]
⟨si⟩

λ̃sα̇ λ̃sβ̇

∂ 2

∂ λ̃iα̇∂ λ̃iβ̇

,

SA(2) =
n

∑
i=1

[si]
⟨si⟩

λ̃sα̇

∂ 2

∂ λ̃iα̇∂ηaA
,

SAB(2) =
n

∑
i=1

[si]
⟨si⟩

∂ 2

∂ηaB∂ηaA
.

(4.44)

2note that we have made explicit the reference vector r which was taken to be pn in [214]
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We now expand the generic superamplitude on the left-hand side of (4.40) in the Grassmann

odd variable ηs of the soft superfield:

Mn+1 (Ψs,Ψ1, . . . ,Ψn) =Mn+1 (Hs+,Ψ1, . . . ,Ψn)+ηsAMn+1

(
SA

s+,Ψ1, . . . ,Ψn

)
+

1
2

ηsAηsBMn+1

(
GAB

s+,Ψ1, . . . ,Ψn

)
+ · · ·

(4.45)

and compare with the right-hand side of (4.40) to get the following soft limits:

Soft Superfields Superamplitude expansion on ε → 0

Soft graviton Mn+1 (Hs+, . . .) =
(

1
ε3 S(0)+ 1

ε2 S(1)+ 1
ε
S(2)
)
Mn +O

(
ε0)

Soft gravitino Mn+1
(
SA

s+, . . .
)
=
(

1
ε2SA(1)+ 1

ε
SA(2)

)
Mn +O

(
ε0)

Soft graviphoton Mn+1
(
GAB

s+ . . .
)
= 1

ε
SAB(2)Mn +O

(
ε0)

Soft graviphotino Mn+1
(
χABC

s . . .
)
= 0

ε
+O

(
ε0)

Soft scalar Mn+1
(
ΦABCD

s , . . .
)
= 0

ε
+O

(
ε0)

Table 4.15: Various soft limit expansion of the superamplitude

One can easily check that the soft graviton limit obtained here coincides with our calcula-

tions in Subsection 4.5.1. We also see that there are no soft divergences for graviphotino and

scalar.

4.6 Conclusion

In this work, we have computed the soft and collinear limits of the maximally supersymmetric

N = 8 supergravity theory in four spacetime dimensions using the double copy relations in

both soft and collinear sectors of N = 4 Super Yang-Mills. The computation was done in

the celestial basis appropriate for applications to celestial holography. An important point in

our application of double copy is a different choice of self-duality condition for scalars. The

constraints imposed here differ in signs: α4 = α̃4 =−1 and α8 = 1. This choice is motivated by

our desire to combine the collinear limits for different factorizations of N = 4 SYM to N = 8

supergravity. Based on the factorization of states in the gravity theory in terms of states in the

gauge theory, we are able to constrain and determine the R-symmetry indices in the collinear
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limit. This is also the novelty of this work.

In the next chapter, we will see the asymptotic symmetry algebra construction of maximally

supersymmetric N = 8 supergravity using the results of this chapter, but in the context of flat

space holography.
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CHAPTER 5

ASYMPTOTIC SYMMETRY ALGEBRA OF N = 8 SUPERGRAVITY

In this chapter, the work done was conducted in collaboration with Nabamita Banerjee and

Ranveer K. Singh, Phys. Rev. D 109, 046010, published on 26th February 2024.

5.1 Introduction

Here, we calculate the asymptotic symmetries of the four-dimensional maximally supersym-

metric N = 8 supergravity using the CCFT prescription. In celestial CFT of supergravity, the

stress tensor is generated by the shadow transform [351, 388, 389] of the soft graviton operator

suitably modified to obtain the correct OPE [187]1, while the supercurrent is generated by the

soft gravitino operator [7].

For N > 1, the global symmetry algebra contains an additional R-symmetry, and hence

naïvely one would expect that the asymptotic algebra would contain an infinite dimensional

extension of the global R-symmetry algebra as well. It was shown in [390] that for N = 2, even

for the U(1)N subgroup of the R-symmetry group U(N ) which only scales the supercharges,

such an infinite dimensional extension is mathematically inconsistent. For the present chapter,

we study the celestial amplitudes of N = 8 supergravity and use the soft and collinear limits

calculated in chapter 4 to compute the Ward identities and the OPE of conformal operators in

the corresponding CCFT.

In chapter 4, we computed the soft and collinear amplitudes of the N = 8 supergravity from

N = 4 Super Yang-Mills Theory. This double copy is not established at the level of amplitude.

However, one can interpret this as the double copy of the universalities in soft and collinear

sectors. Although there has been recent work in the literature towards the double copy of the

complete celestial amplitudes [391], we are focused on implementing the celestial map defined

in Eq.(2.13) in chapter 2 on supergravity amplitudes to construct the celestial superamplitude

after the successful use of double copy from the previous chapter in this work.

We construct the stress tensor and the supercurrents of the theory using the shadow trans-

forms of soft graviton and soft gravitino operators. Since the scalars and graviphotinos do not

have soft divergences (see Table 4.15, chapter 4 [392]), we are only left with soft gravipho-

ton operators. The R-symmetry current (if any) can then only be constructed using the soft

1see Section 5.3 for more details
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graviphoton operators. We construct the most general such operator present in the CCFT and

show that the operator is trivial by requiring that the modes of this operator extend the SU(8)R

R-symmetry algebra.

The chapter is organized as follows: in Section 5.2, we set up our notations and record some

definitions and results about the soft and collinear limits in the CCFT of N = 8 supergravity

used later in the chapter. In Section 5.3, we construct the symmetry currents and compute their

OPEs. We also construct the possible R-symmetry currents and show that the requirements of

R-symmetry extension make the current trivial. Finally, in Section 5.4, we list the full N =

8 sbms4 algebra. We conclude in Section 5.5 by summarising our results and emphasizing our

future goals of the study. The Appendices C contain the OPEs of various conformal operators

in the Mellin basis computed from the results in chapter 4 and a detailed calculation of the OPE

of the possible R-symmetry currents.

5.2 Notations and preliminaries

In this section, we set up the notations for celestial amplitudes and soft and collinear limits in

supergravity.

5.2.1 OPEs of celestial operators in N = 8 Supergravity

Let {ηA}8
A=1 be the Grassmann coordinates on the N = 8 superspace. We can package the

on-shell degrees of freedom in N = 8 supergravity in an on-shell superfield defined as

Ψ(p,η) = H+(p)+ηAψ
A
+(p)+ηABGAB

+ (p)+ηABCχ
ABC
+ (p)

+ηABCDΦ
ABCD(p)+ η̃

ABC
χ
−
ABC(p)+ η̃

ABG−
AB(p)+ η̃

A
ψ

−
A (p)+ η̃H−(p)

(5.1)

where we have introduced the notation

ηA1...An ≡
1
n!

ηA1 . . .ηA2

η̃
A1...An ≡ ε

A1...AnB1...B8−nηB1...B8−n

η̃ ≡
8

∏
A=1

η
A.

(5.2)

The fields H± represent positive and negative helicity graviton, GAB
+ and G−

AB represent positive

and negative helicity graviphotons, ψA
+ and ψ

−
A represent positive and negative helicity grav-

itinos, χABC
+ and χ

−
ABC represent positive and negative helicity graviphotinos and finally ΦABCD
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represent the real scalars. The superamplitude is then defined by

Mn({p1,η
1}, . . .{pn,η

n}) = ⟨Ψ1(p1,η
1) . . .Ψn(pn,η

n)⟩. (5.3)

This superfield can be Mellin transformed in the usual way to obtain a celestial superfield on

CS2, but it turns out that the component fields will have the same conformal dimension [221].

This is not appropriate to work with since we want the component fields to have conformal

dimensions according to their spin. Thus we work with the so-called quasi-on-shell superfield

[221] defined as

Ψ∆(z, z̄,η) = H+
∆
(z, z̄)+ηAψ

A
∆ (z, z̄)+ηABGAB

∆ (z, z̄)+ηABCχ
ABC
∆ (z, z̄)

+ηABCDΦ
ABCD
∆ (z, z̄)+ η̃

ABC
χ̄ABC ∆(z, z̄)+ η̃

ABḠAB ∆(z, z̄)

+ η̃
A
ψ̄A ∆(z, z̄)+ η̃H−

∆
(z, z̄),

(5.4)

where the components are the Mellin transforms of the components fields of Ψ(p,n), all with

scaling dimension ∆ as defined in (2.11). The celestial correlator for the component fields

can then be defined as in (2.13). Using the collinear limit of the bulk amplitude, the OPEs of

the celestial operators can be computed. To do this computation, we use the collinear limits

computed in [392]. As an example, we calculate the OPE of two graviton operators. The

celestial correlator is given by,

⟨O∆1,+2O∆2,+2 . . .O∆n,ℓn⟩=

(
n

∏
j=1

∫
∞

0
dω jω

∆ j−1
j

)
δ

4

(
∑

i
ωiqi

)
Mn
(
1+2,2+2, . . . ,n

)
=

(
n

∏
j=3

∫
∞

0
dω jω

∆ j−1
j

∫
∞

0
dω1

∫
∞

0
dω2ω

∆1−1
1 ω

∆2−1
2

)

×δ
4

(
n

∑
i=3

ωiqi +ωpqp

)
ω2

p

ω1ω2

z̄12

z12
Mn−1

(
p+2, . . . ,n

)
(5.5)

where Mn is the bulk amplitude of component fields and we used the collinear limit

Mn
(
1+2,2+2, . . . ,n

)
=

ω2
p

ω1ω2

z̄12

z12
Mn−1

(
p+2, . . . ,n

)
. (5.6)
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Here pi = ωiqi, i = 1,2, the momenta along the collinear channel is p = p1 + p2 = ωpqp with

ωp = ω1 +ω2. Now we use the following integral [221]:

∫
∞

0
dω2 ω

∆2−1
2

∫
∞

0
dω1 ω

∆1−1
1 ω

α
1 ω

β

2 ω
γ
p f (ωp) = B(∆1 +α,∆2 +β )

∫
∞

0
dωp ω

∆p−1
p f (ωp)

(5.7)

where ωp = ω1 +ω2 and ∆p = ∆1 +∆2 +α +β + γ and

B(x,y) =
Γ(x)Γ(y)
Γ(x+ y)

(5.8)

is the Euler beta function. We get

⟨O∆1,+2O∆2,+2 . . .O∆n,ℓn⟩=
z̄12

z12
B(∆1 −1,∆2 −1)

(
n

∏
j=3

∫
∞

0
dω jω

∆ j−1
j

∫
∞

0
dωpω

∆1+∆2−1
p

)

×δ
4

(
n

∑
i=3

ωiqi +ωpqp

)
Mn−1

(
p+2,3, . . . ,n

)
=

z̄12

z12
B(∆1 −1,∆2 −1) ⟨O∆1+∆2,+2O∆3,ℓ3 . . .O∆n,ℓn⟩

(5.9)

This gives the OPE corresponding to the two positive helicity graviton operators,

O∆1,+2 (z1, z̄1)O∆2,+2 (z2,z̄2)∼
z̄12

z12
B(∆1 −1,∆2 −1)O∆1+∆2,+2 (z2, z̄2) (5.10)

Similarly, for negative helicity gluon, we have the collinear amplitude,

Mn
(
1−2,2−2, . . .

)
=

ω2
p

ω1ω2

z12

z̄12
Mn−1

(
p−2, . . . ,n

)
(5.11)

Hence the OPE

O∆1,−2 (z1, z̄1)O∆2,−2 (z2, z̄2)∼
z12

z̄12
B(∆1 −1,∆2 −1)O∆1+∆2,+2 (z2, z̄2) (5.12)
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The collinear limit of two opposite helicity gravitons is

Mn
(
1+2,2−2,3, . . . ,n

)
=

ω3
1

ω2
pω2

z̄12

z12
Mn−1

(
p−2,3, . . . ,n

)
+

ω3
2

ω2
pω1

z12

z̄12
Mn−1

(
p+2,3, . . . ,n

) (5.13)

which gives us the OPE

O∆1,+2 (z1,z1)O∆2,−2 (z2, z̄2) = B(∆1 +3,∆2 −1)
z̄12

z12
O∆1+∆2,−2 (z2, z̄2)

+B(∆1 −1,∆2 +3)
z12

z̄12
O∆1+∆2,+2 (z2, z̄2)

(5.14)

One can calculate the OPEs of all other component fields in a similar way using the collinear

limits. The results are listed in Appendix C.1.

5.2.2 Soft operators in N = 8 supergravity

In the last section, we discussed the collinear limits of amplitudes. In this section, we are

looking at their soft limits. As we know, soft momentum p → 0 can be written as ωp → 0 on

the celestial sphere, and hence an amplitude written in the celestial coordinates can be analyzed

in the soft limit of any of the external momenta. The result is a soft theorem that expresses an

n-point amplitude with soft external momentum p in terms of an (n−1)-point amplitude along

with a soft factor given by powers of ω−1
p . The various powers of ω−1

p then correspond to

leading, sub-leading, sub-sub-leading soft theorems, and so on. Let us first define the celestial

superamplitude as the Mellin transform of superamplitude:〈
N

∏
n=1

O∆n (zn, z̄n,η
n)

〉
≡

(
N

∏
n=1

∫
dωnω

∆n−1
n

)
δ
(4)

(
N

∑
n=1

ωnqn

)
×

MN
(
{ω1,z1, z̄1,η

1}, . . .{ωN ,zN , z̄N ,η
N}
)
,

(5.15)

where MN
(
{ω1,z1, z̄1,η

1}, . . .{ωN ,zN , z̄N ,η
N}
)

is the superampltude (5.3) written in the ce-

lestial basis. We also denote it simply by MN (1,2, . . . ,N). The above expression is identical

to that of (2.13), with the explicit incorporation of the Grassmann factors in the scattering am-

plitudes.

One can now expand both sides of (5.15) in the Grassmann parameter ηi and compare the co-
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efficients to get the celestial amplitude of various component fields. This has been in Appendix

C.2 to calculate the celestial correlator with soft graviton and soft gravitino. The celestial cor-

relator of the leading soft graviton operator is given by〈
J1(z, z̄)

N

∏
n=1

O∆n,ℓn (zn, z̄n)

〉
=

N

∑
i=1

(z̄− z̄i)

(z− zi)

(ξ − zi)
2

(ξ − z)2 ⟨O∆1,ℓ1 (z1, z̄1) ,

· · ·O∆i+1,ℓi (zi, z̄i) , · · · ,O∆N ,ℓN (zN , z̄N)⟩

(5.16)

and〈
J̄1(z, z̄)

N

∏
n=1

O∆n,ℓn (zn, z̄n)

〉
=

N

∑
i=1

(z− zi)

(z̄− z̄i)

(
ξ̄ − z̄i

)2(
ξ̄ − z̄

)2 ⟨O∆1,ℓ1 (z1, z̄1) ,

· · ·O∆i+1,ℓi (zi, z̄i) , · · · ,O∆N ,ℓN (zN , z̄N)⟩

(5.17)

where

J1(z, z̄) = lim
∆→1

(∆−1)O∆,+2(z, z̄), J̄1(z, z̄) = lim
∆→1

(∆−1)O∆,−2(z, z̄) (5.18)

are the ∆ = 1 soft graviton operators and ξ ∈ CS2 is a reference point. The celestial correlator

of the subleading soft graviton operator is〈
J0(z, z̄)

N

∏
n=1

O∆n,ℓn (zn, z̄n)

〉
=

N

∑
i=1

(z̄− z̄i)

(z− zi)

(ξ − zi)

(ξ − z)
((z̄− z̄i)∂z̄i −2h̄i)

×
〈
· · ·O∆i,ℓi (zi, z̄i) · · ·

〉 (5.19)

and 〈
J̄0(z, z̄)

N

∏
n=1

O∆n,ℓn (zn, z̄n)

〉
=

N

∑
i=1

(z− zi)

(z̄− z̄i)

(
ξ̄ − z̄i

)(
ξ̄ − z̄

) ((z− zi)∂zi −2hi)

×
〈
· · ·O∆i,ℓi (zi, z̄i) · · ·

〉 (5.20)

where

J0(z, z̄) = lim
∆→0

∆O∆,+2(z, z̄), J̄0(z, z̄) = lim
∆→0

∆O∆,−2(z, z̄) (5.21)

are the ∆ = 0 soft graviton operators and hi =
∆i+ℓi

2 , h̄i =
∆i−ℓi

2 are the conformal weights of the

operator O∆i,ℓi(z, z̄).
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The celestial correlator of the soft gravitino operator is given by (c.f. [7, (6.2), (6.3)])〈
JA

1/2(z, z̄)
N

∏
n=1

O∗n
∆n,ℓn

(zn, z̄n)

〉
=

N

∑
i=1

f (A, ℓi,∗i,∗′i)(−1)σi
(z̄− z̄i)

(z− zi)

(ξ − zi)

(ξ − z)

⟨· · ·O∗′i
∆i+

1
2 ,ℓ

c
i
(zi, z̄i) , · · · ⟩

(5.22)

and 〈
J̄1/2 A(z, z̄)

N

∏
n=1

O∗n
∆n,ℓc

n
(zn, z̄n)

〉
=

N

∑
i=1

f̄ (A, ℓc
i ,∗i,∗′i)(−1)σi

(z− zi)

(z̄− z̄i)

(
ξ̄ − z̄i

)(
ξ̄ − z̄

)
⟨· · ·O∗′i

∆i+
1
2 ,ℓi

(zi, z̄i) , · · · ⟩
(5.23)

where

JA
1/2(z, z̄) = lim

∆→ 1
2

(
∆− 1

2

)
OA

∆,+ 3
2
(z, z̄), J̄1/2 A(z, z̄) = lim

∆→ 1
2

(
∆− 1

2

)
O

∆,− 3
2 ,A

(z, z̄) (5.24)

are soft gravitino operators. Here, the superscripts ∗i indicate the R-symmetry index of the

operator. We have put the R-symmetry index ∗i as a superscript for brevity but it can also be

on subscript depending on the helicity of the operator. Here the number of fermions preceding

particle i, σi = 1 if ℓi ∈ Z+ 1
2 and 0 otherwise (see [7] for detailed explanation).

As explained in Appendix C.2, the positive helicity soft gravitino operator only acts on ce-

lestial operators O∗i
∆i,ℓi

(zi, z̄i) with

ℓi ∈ {−3/2,−1,−1/2,0,+1/2,+1,+3/2,+2}. (5.25)

while the negative helicity soft gravitino operator acts on celestial operators O∗i
∆i,ℓ

c
i
(zi, z̄i) with

ℓc
i ∈ {−2,−3/2,−1,−1/2,0,+1/2,+1,+3/2}. (5.26)

The factors f (A, ℓi,∗i,∗′i), f̄ (A, ℓc
i ,∗i,∗′i) are the R-symmetry factors that we can determine us-

ing the collinear limits given above. From (5.22) and (5.23) it is clear that the first argument of

f is the R-symmetry index of the soft gravitino operator itself, the second and third arguments

are the helicity ℓi and R-symmetry index ∗i respectively of the operator O∗i
∆i,ℓi

which the soft

gravitino will act on. Lastly, the fourth argument will be the R-symmetry index ∗′
i of the resul-
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tant operator. Similarly, it goes for f̄ . As an example, we can see from the OPE in Eq.(C.1) that

when ℓi =−3
2 , f (A,−3/2,B,∗′i) = δ A

B . Since the resulting particle ℓ=−2 has no R-symmetry

index the ∗′i entry is empty.

The soft graviphoton limit can be calculated using the OPEs of the graviphoton operator with

various conformal operators. These OPEs are listed in Appendix C.1. Soft limits correspond to

the values of scaling dimension ∆ of the graviphoton operator for which the beta functions ap-

pearing in the OPEs have poles. From Appendix C.1 we see that the OPEs of the graviphoton

operator with various other operators involve2 B(∆,∗). Since B(∆,∗) has poles at all non-

positive integer values of ∆, the leading soft limit of the graviphoton operator is ∆ → 0, and

all other negative, integral values are subleading. In Subsection 5.3.2, we will need the leading

soft graviphoton limit.

Finally, as noted in [392], graviphotino and scalars are trivial in the soft limit and hence do

not correspond to any global symmetry [7]. So we do not consider them further.

5.3 Asymptotic Symmetry Generators in N = 8 SUGRA

Let us first consider the obvious global symmetries of N = 8 supergravity. The global sym-

metry algebra consists of the Poincaré algebra and the N = 8 supersymmetry algebra, together

called the N = 8 super-Poincaré algebra and SU(8)R R−symmetry algebra. At null infin-

ity, we expect to obtain infinite dimensional extensions of these algebras. Following previous

works [7, 186, 188], we can easily construct the currents that extend the super-Poincaré alge-

bra, we call this algebra the N = 8 sbms4 algebra. We start by constructing the currents for the

N = 8 sbms4 algebra.

5.3.1 N = 8 sbms4 algebra currents

The bms4 part of the N = 8 sbms4 algebra is known to be generated [186] by the shadow

transform of the ∆ = 0 graviton operator suitably modified as discussed below. This is called

the generator of superrotations and the level one descendant of the ∆ = 1 graviton operator

is called the generator of supertranslations on the celestial sphere. Let us define the shadow

2The OPE of two graviphoton operators with opposite helicity involves another term, c.f. Eq. (C.2). One of
the terms in the OPE vanishes depending on which of the two helicities of the graviphoton we take to be soft. See
Appendix C.3 for such calculations.
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transforms T0(z, z̄) and T 0(z, z̄) as:

T0(z, z̄) = lim
∆→0

3!∆
2π

∫
d2z′

1

(z− z′)4O∆,−2
(
z′, z̄′

)
T 0(z, z̄) = lim

∆→0

3!∆
2π

∫
d2z′

1

(z̄− z̄′)4O∆,+2
(
z′, z̄′

) (5.27)

It has been argued in [187] that the above shadow transform operator does not satisfy the usual

OPE of a stress tensor. In particular, the T0T0 OPE has an extra term that does not vanish as

shown in [187, Appendix C] unless we modify the stress tensor appropriately. The origin of

the problem is the observation that T0(z) is not holomorphic:

∂̄T0 =−1
2

∂
3J̄0(z, z̄) (5.28)

where J0 is the ∆ = 0 soft graviton operator defined in (5.21). Hence the modified stress tensor

can be defined as follows:

Tmod := T0 +
1
2

∂
3
εJ̄0

(5.29)

where

εJ̄0
:=
∫ z̄

z̄0

dw̄J̄0(z, w̄) (5.30)

with z0 as a reference point. Then it has been shown that the modified stress tensor satisfies the

correct TmodTmod OPE [187, Appendix C]. From now on, we omit the subscript “mod" and T,T

will denote the modified stress tensor. Using the soft limits (5.16), (5.17), (5.19) and (5.20) and

performing the same calculations as in [186], we arrive at the OPE

T (z)O∆,ℓ(w, w̄) =
h

(z−w)2O∆,ℓ(w, w̄)+
1

z−w
∂wO∆,ℓ(w, w̄)+ regular.

T (z̄)O∆,ℓ(w, w̄) =
h̄

(z̄− w̄)2O∆,ℓ(w, w̄)+
1

z̄− w̄
∂w̄O∆,ℓ(w, w̄)+ regular.

(5.31)

The supertranslations generator P(z), P(z) are defined as:

P(z) = lim
∆→1

(∆−1)
4

∂z̄O∆,+2(z, z̄)

P(z̄) = lim
∆→1

(∆−1)
4

∂zO∆,−2(z, z̄).
(5.32)
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For P(z) we have

P(z)O∆,ℓ(w, w̄) =
1

z−w
O∆+1,ℓ(w, w̄)+ regular (5.33)

and similar OPEs hold for P(z̄) with conjugated poles. These operators are related to the

supertranslation generator P(z, z̄), which is a primary field operator of conformal weight (3
2 ,

3
2).

By contour integrals [186]:

P(z) =
1

2πi

∮
dz̄P(z, z̄), P(z̄) =

1
2πi

∮
dzP(z, z̄). (5.34)

The supertranslation satisfies the OPE

P(z, z̄)O∆,ℓ(w, w̄) =
1

z−w
1

z̄− w̄
O∆+1,ℓ(w, w̄)+ regular. (5.35)

The supercurrent for N = 1 supersymmetry was constructed in [7]. We will see that the same

construction will give us the 8 supercurrents for N = 8 supersymmetry. We thus define the

supercurrents as the shadow transform of the ∆ = 1
2 gravitino operator:

SA(z) = lim
∆→ 1

2

∆− 1
2

π

∫
d2z′

1

(z− z′)3OA;∆,− 3
2
(z′, z̄′)

SA
(z̄) = lim

∆→ 1
2

∆− 1
2

π

∫
d2z′

1

(z̄− z̄′)3O
A
∆,+ 3

2
(z′, z̄′)

(5.36)

Note that the above operators are also not holomorphic since

∂̄SA(z, z̄) = lim
∆→1/2

(∆− 1
2
)∂ 2

z OA;∆,− 3
2
(z, z̄) = ∂

2J̄1/2 A(z, z̄) ̸= 0, (5.37)

where J̄1/2 A(z, z̄) is the leading soft gravitino operator defined in (5.24). One can modify it in

a similar way as in Eq. (5.29). Put

εJ̄1/2 A(z, z̄) :=
∫ z

z̄0

dw̄J̄1/2 A(w, w̄) (5.38)

where z0 is a reference point and define

SA
mod := SA −∂

2
ε

A
J̄1/2

. (5.39)
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We emphasize that this modification is not required at the quantum level since the OPEs of SA

are as expected for a supercurrent. So we continue to use the shadow transform of the leading

soft gravitino operator as the supercurrent without any modification.

Following the calculations of [7, Section 7], it is straightforward to see that

T (z)SA(w) =
3
2

SA(w)
(z−w)2 +

∂SA(w)
z−w

+ regular,

T (z̄)SA
(w̄) =

3
2

SA
(z̄)

(z̄− w̄)2 +
∂̄SA

(w̄)
z̄− w̄

+ regular.

(5.40)

and the OPEs T SA and T SA are regular. These OPEs confirm the conformal weights of SA and

SA as (3
2 ,0) and (0, 3

2) respectively. We now want to show that

: {SB(z),S
A
(z̄)} : = : SB(z)S

A
(z̄)+SA

(z̄)SB(z) : = δ
A
BP(z, z̄). (5.41)

Using the gravitino soft limit (5.22) and (5.23) and the leading graviton limits (5.16) and (5.17)

and following the calculations in [7, Section 7.3], we get3〈
SB(z)S

A
(w̄)

N

∏
n=3

O∗n
∆n,ℓn

(zn, z̄n)

〉

= δ
A
B

N

∑
i=3

[
1

(w̄− z̄)2
z̄− z̄i

z− zi
+

1
z̄− w̄

1
z− zi

+
1

w̄− z̄i

1
z− zi

]〈
· · ·O∗i

∆i+1,ℓi
(zi, z̄i) , · · ·

〉
−

N

∑
i=3

f (A, ℓi,∗i,∗′i) f̄ (B, ℓi −1/2,∗′i,∗′′i )
1

z− zi

1
w̄− z̄i

〈
· · ·O∗′′i

∆i+1,ℓi
(zi, z̄i) , · · ·

〉
+

N

∑
i, j=3
i̸= j

(−1)σi+σ j f (A, ℓi,∗i,∗′i) f̄ (B, ℓ j,∗ j,∗′j)
1

z− zi

1
w̄− z̄ j

〈
· · ·O∗′i

∆i+
1
2 ,ℓi− 1

2
(zi, z̄i) , · · · ,

O
∗′j
∆ j+

1
2 ,ℓ j+

1
2

(
z j, z̄ j

)
· · ·
〉

(5.42)

where the factors f (A, ℓi,∗i,∗′i), f̄ (B, ℓ j,∗ j,∗′j) are the R-symmetry factors that appear on taking

the soft or collinear limit depending on the spins and helicities of the soft and collinear particles.

In this notation, the first argument of f is the R-symmetry index of the positive helicity soft

3note that we do not separate the operators in the correlator according to their spins ℓ,ℓc unlike [7] since there
is an overlap in the ranges of the two spins. So, the spins are assumed to be arbitrary in the correlators in this
calculation.
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gravitino, second argument is the spin (and helicity) of one of the hard4 particles, the third

argument is the R-symmetry index of that hard particle (left implicit for generality) and the

fourth argument is the resulting R-symmetry index of the hard particle after the soft limit is

taken (again left implicit for generality). The notation for f̄ is similar. It is understood that

if the spins do not belong to the required range specified in (C.29) and (C.30) then f , f̄ = 0.

Similarly〈
SA

(z̄)SB(w)
N

∏
n=3

O∗n
∆n,ℓn

(zn, z̄n)

〉

= δ
A
B

N

∑
i=3

[
1

(w− z)2
z− zi

z̄− z̄i
+

1
z−w

1
z̄− z̄i

+
1

z̄− z̄i

1
w− zi

]〈
· · ·O∗i

∆i+1,ℓi
(zi, z̄i) , · · ·

〉
−

N

∑
i=3

f̄ (B, ℓi,∗i,∗′i) f (A, ℓi +1/2,∗′i,∗′′i )
1

w− zi

1
z̄− z̄i

〈
· · ·O∗′′i

∆i+1,ℓi
(zi, z̄i) , · · ·

〉
−

N

∑
i, j=3
i̸= j

(−1)σi+σ j f̄ (B, ℓi,∗i,∗′i) f (A, ℓ j,∗ j,∗′j)
1

w− zi

1
z̄− z̄ j

〈
· · ·O∗′i

∆i+
1
2 ,ℓi+

1
2
(zi, z̄i) , · · · ,

O
∗′j
∆ j+

1
2 ,ℓ j− 1

2

(
z j, z̄ j

)
· · ·
〉

(5.43)

Thus the anticommutator is〈(
SA

(z̄)SB(w)+SB(z)S
A
(w̄)
) N

∏
n=3

O∗n
∆n,ℓn

(zn, z̄n)

〉

= δ
A
B

N

∑
i=3

[
1

(w− z)2
z− zi

z̄− z̄i
+

1
z−w

1
z̄− z̄i

+
1

z̄− z̄i

1
w− zi

]〈
· · ·O∗i

∆i+1,ℓi
(zi, z̄i) , · · ·

〉
+δ

A
B

N

∑
i=3

[
1

(w̄− z̄)2
z̄− z̄i

z− zi
+

1
z̄− w̄

1
z− zi

+
1

w̄− z̄i

1
z− zi

]〈
· · ·O∗i

∆i+1,ℓi
(zi, z̄i) , · · ·

〉
−

N

∑
i=3

f (A, ℓi,∗i,∗′i) f̄ (B, ℓi −1/2,∗′i,∗′′i )
1

z− zi

1
w̄− z̄i

〈
· · ·O∗′′i

∆i+1,ℓi
(zi, z̄i) , · · ·

〉
−

N

∑
i=3

f̄ (B, ℓi,∗i,∗′i) f (A, ℓi +1/2,∗′i,∗′′i )
1

w− zi

1
z̄− z̄i

〈
· · ·O∗′′i

∆i+1,ℓi
(zi, z̄i) , · · ·

〉
.

(5.44)

Here, in the last terms in Eq.(5.42) and Eq.(5.43), we have relative signs; hence, both terms

cancel. One can notice that the relative sign is due to the action of S and S on different clusters

for i < j and i > j in both terms. Then we see that the normal ordered current : {SB(z),S
A
(z̄)} :

4that is not soft
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satisfies〈
: {SB(z),S

A
(z̄)} :

N

∏
n=3

O∗n
∆n,ℓn

(zn, z̄n)

〉

= 2δ
A
B

N

∑
i=3

1
z̄− z̄i

1
z− zi

〈
· · ·O∗i

∆i+1,ℓi
(zi, z̄i) , · · ·

〉
−

N

∑
i=3

f (A, ℓi,∗i,∗′i) f̄ (B, ℓi −1/2,∗′i,∗′′i )
1

z− zi

1
z̄− z̄i

〈
· · ·O∗′′i

∆i+1,ℓi
(zi, z̄i) , · · ·

〉
−

N

∑
i=3

f̄ (B, ℓi,∗i,∗′i) f (A, ℓi +1/2,∗′i,∗′′i )
1

z− zi

1
z̄− z̄i

〈
· · ·O∗′′i

∆i+1,ℓi
(zi, z̄i) , · · ·

〉
.

(5.45)

We now show that for any ℓi, R-symmetry factors in the last two sums reduce to δ A
B . Let us

start with ℓi =+2 in which case ∗i,∗′′i is empty. Moreover, in this case, f̄ (B,+2,∗i,∗′i) = 0 so

that we only have one term to analyse. From the OPEs in Appendix C.1, we see that ∗′i = A and

f (A,+2,−,∗′i) f̄ (B,+3/2,∗′i,−)O∆i+1,+2 (zi, z̄i) = δ
A
BO∆i+1,+2 (zi, z̄i) . (5.46)

The case ℓi = +3
2 is more interesting. Suppose ∗i = C then from the OPEs, we can easily see

that ∗′i = AC for the second term and ∗′i is empty for the last term. We then have

f (A,+3/2,C,∗′i) f̄ (B,+1,∗′i,∗′′i )O
∗′′i
∆i+1,+3/2 (zi, z̄i) = 2!δ [A

B OC]
∆i+1,+3/2 (zi, z̄i) (5.47)

and similarly

f̄ (B,+3/2,C,−) f (A,+2,−,∗′′i )O
∗′′i
∆i+1,+3/2 (zi, z̄i) = δ

C
B OA

∆i+1,+3/2 (zi, z̄i) (5.48)

We can clearly see that the sum of the last two terms is simply δ A
BOC

∆i+1,+3/2 (zi, z̄i). The case

ℓi =−3
2 is similar. Let us now analyze the case ℓi =+1 in which case ∗i =CD. We get

f (A,+1,CD,∗′i) f̄ (B,+1/2,∗′i,∗′′i )O
∗′′i
∆i+1,+2 (zi, z̄i)

= f̄ (B,+1/2,∗′i,ACD)OACD
∆i+

1
2 ,+1/2 (zi, z̄i)

= 3δ
[A
B OCD]

∆i+1,+1 (zi, z̄i) .

(5.49)

Similarly

f̄ (B,+1,CD,∗′i) f (A,+3/2,∗′i,∗′′i )O
∗′′i
∆i+1,+3/2 (zi, z̄i) =−2!δ [C

B OD]A
∆i+1,+1 (zi, z̄i) (5.50)
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which finally implies

3δ
[A
B OCD]−2!δ [C

B OD]A =
1
2

[
(δ A

BOCD −δ
A
BODC)+(δC

B ODA −δ
C
B OAD)+(δ D

B OAC −δ
D
B OCA)

]
−δ

C
B ODA +δ

D
B OCA

= δ
A
BOCD

(5.51)

The case ℓi =−1 is similar. The same calculation as in ℓi = 1 recurs for the cases ℓi = 1/2,0.

These calculations simplify the OPE (5.45). We get〈
: {SB(z),S

A
(z̄)} :

N

∏
n=3

O∗n
∆n,ℓn

(zn, z̄n)

〉
= δ

A
B

N

∑
i=3

1
z̄− z̄i

1
z− zi

〈
· · ·O∗i

∆i+1,ℓi
(zi, z̄i) , · · ·

〉
(5.52)

In particular,

: {SB(z),S
A
(z̄)} : O∆,ℓ(w, w̄) = δ

A
B

1
z−w

1
z̄− w̄

O∆+1,ℓ(w, w̄)+ regular. (5.53)

Comparing this OPE with (5.35) readily implies the desired result

: {SB(z),S
A
(z̄)} : = δ

A
BP(z, z̄). (5.54)

5.3.2 Possible R-symmetry current

Recall that R-symmetry acts on supercharges QA
α and Qα̇A, A = 1, . . . ,8 by multiplying a uni-

tary matrix U ∈U(8). This means that the supercharges transform in the fundamental represen-

tation of the R-symmetry group. At the level of Lie algebra, we can identify the R-symmetry

group as simply su(8)⊕u(1) since U(8)∼= (SU(8)×U(1))/Z8. Thus we can label the genera-

tors of R-symmetry to be T A
B and R, where T A

B are generators of the fundamental representation

of SU(8) satisfying the su(8) algebra:

[
T A

B ,TC
D

]
= δ

A
DTC

B −δ
C
B T A

D , (5.55)
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and R is the generator of the scaling U(1). A suitable matrix representation for the generators

is [215], (
T A

B

)C
D = δ

A
Dδ

C
B − 1

8
δ

A
B δ

C
D (5.56)

T A
B acts on the supercharges as

[
T A

B ,QC
α

]
=
(

T A
B

)C

D
QD

α ,
[
T A

B ,Qα̇C

]
=−

(
T A

B

)D

C
Qα̇D. (5.57)

We now want to construct a current G̃A
B(z, z̄) whose modes will extend the generators T A

B . As

will be shown in Section 5.4, the modes of the supercurrents SA,S
A will extend the super-

charges. Since the OPE of currents directly translates to the commutator of their modes within

radial quantization, our currents must satisfy the OPE:

G̃A
B(z, z̄)SC(w)∼ ((z−w) singularity)

(
T A

B

)D

C
SD(w),

G̃A
B(z, z̄)S

C
(w)∼−((z̄− w̄) singularity)

(
T A

B

)C

D
SD

(w).
(5.58)

Note that SA,S
A are holomorphic and antiholomorphic currents respectively, this imposes the

condition that the singularities in (5.58) be holomorphic and antiholomorphic respectively. As

will be shown in Section 5.4, nonholomorphic (holomorphic) singularity in the OPE of GA
B(z, z̄)

with SC(w) (SC
(w)) results in nonsensical algebra. This requirement will be crucial.

The only conformal operator we are left with is the graviphoton operator. Moreover, the

leading soft graviphoton operator corresponds to ∆ = 0, as can be inferred from the poles of

the beta function in the OPEs of graviphoton operators with other operators, which are sum-

marised in Appendix C.1. It is clear that we must consider the order independent graviphoton

double soft limit with opposite helicity, that is, their normal ordered commutator (since they are

bosonic). Since it contains the factor δ AB
CD, as can be seen from the collinear limits, this can be

manipulated properly to obtain the SU(8) generators. Here, we consider the most general in-

tegral transform corresponding to negative and positive helicity soft graviphotons, respectively

as

GAB(z, z̄) = lim
∆→0

∆

π

∫
d2z′

1
(z− z′)a

1

(z̄− z̄′)bOAB;∆,−1(z′, z̄′)

GCD
(z, z̄) = lim

∆→0

∆

π

∫
d2z′

1

(z̄− z̄′)a′
1

(z− z′)b′O
CD
∆,+1(z

′, z̄′).
(5.59)
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One can easily see that we can recover the usual shadow transformation [393] by taking spe-

cific values of a and b. The operators OAB;0,−1 and OCD
0,+1 have conformal weights (−1

2 ,
1
2)

and (1
2 ,−

1
2) respectively. Hence scaling transformation reveals the conformal weights of the

currents GAB and GCD to be (a− 3
2 ,b−

1
2) and (b′− 1

2 ,a
′− 3

2) respectively.

Let us start with the OPE of our new currents GAB and GCD with any conformal primary oper-

ators.〈
GAB(z, z̄)

N

∏
n=2

O∗n
∆n,ℓn

(zn, z̄n)

〉

= lim
∆1→0

∆1

π

∫
d2z1

1
(z− z1)

a
1

(z̄− z̄1)
b

〈
OAB ∆1,−1(z1, z̄1)

N

∏
n=2

O∗n
∆n,ℓn

(zn, z̄n)

〉

=
1
π

∫
d2z1

1
(z− z1)

a
1

(z̄− z̄1)
b

[
N

∑
n=2

f (A,B, ℓi,∗n,∗′n)
z1 − zn

z̄1 − z̄n

〈
· · ·O∗′n

∆n,ℓn+1(zn, z̄n)
〉]

(5.60)

where f (A,B, ℓi,∗n,∗′n) contains the R-symmetry index of the operators in the correlation func-

tion, which appears on taking the collinear limit. We used the fact that lim∆→0 ∆ B(∆,∗) = 1.

Now we use two basic integrals (see [394, Appendix B] for proof):

∫
d2z1

1

(z− z1)
A

1

(z̄− z̄1)
B

(
z̄1 − z̄ j

)s

z1 − z j
=Cs(A,B)

1(
z j − z

)A (z̄ j − z̄
)B−s−1∫

d2z1
1

(z̄− z̄1)
A

1

(z1 − z1)
B

(
z1 − z j

)s

z̄1 − z̄ j
=Cs(A,B)

1(
z̄ j − z̄

)A
1(

z j − z
)B−s−1

(5.61)

where

Cs(A,B) =
(−1)s+A+B(−π)s!

(−B+1)(−B+2) · · ·(−B+ s+1)
(5.62)

Now performing the shadow integral for n ̸= 1 and s = 1,

∫
d2z1

1
(z− z1)

a
1

(z̄− z̄1)
b

z1 − zn

z̄1 − z̄n
=C1(b,a)

1
(z̄n − z̄)b

1
(zn − z)a−2 (5.63)

We have, 〈
GAB(z, z̄)

N

∏
n=2

O∗n
∆n,ℓn

(zn, z̄n)

〉

=
N

∑
i=2

f (A,B, ℓi,∗i,∗′i)C1(b,a)
1

(z̄i − z̄)b
1

(zi − z)a−2

〈
· · ·O∗′i

∆i,ℓi+1(zi, z̄i)
〉 (5.64)
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Here the helicities of the conformal operators inside the correlator are restricted to ℓn ∈{−2,−3
2 ,−1,−1

2 ,0,+
1
2 ,+1}.

This can be verified from the beta function singularities in the OPEs in Appendix C.1. Similarly,

we can have the OPE for antiholomorphic current GCD which act on the conformal primaries

with helicities restricted in the range ℓ′n ∈ {−1,−1
2 ,0,+

1
2 ,+1,+3

2 ,+2},

〈
GCD

(z, z̄)
N

∏
n=2

O∗n
∆n,ℓ′n

(zn, z̄n)

〉

=
N

∑
n=2

f̄ (C,D, ℓ′i,∗n,∗′n)C(b′,a′)
1

(z̄n − z̄)b′
1

(zn − z)a′−2

〈
· · ·O∗′n

∆n,ℓ′n−1(zn, z̄n)
〉 (5.65)

Here, we can pair ℓ′ with ℓ= ℓ′+1. Hence, we can write the OPEs as,

GAB(z)O∗
∆,ℓ(w, w̄)∼ f (A,B, ℓ,∗,∗′)C1(b,a)

1
(w̄− z̄)b

1
(w− z)a−2O

∗′
∆,ℓ′(z, w̄)

GCD
(z)O∗

∆,ℓ′(w, w̄)∼ f̄ (C,D, ℓ′,∗,∗′)C1(b′,a′)
1

(w̄− z̄)b′
1

(z− z)a′−2O
∗′
∆,ℓ(w, w̄)

(5.66)

The composite current

To construct a suitable current for R-symmetry, we need to use double soft limits of the

graviphoton operators. As is well known, the double soft limit of opposite helicity operators

depends on the order of the soft limit. For this reason, as in [188] we consider the following

operator:

GCD
AB (z, z̄;w, w̄) := GAB(z)G

CD
(w̄)−GCD

(w̄)GAB(z)≡
[
GAB(z),G

CD
(w̄)
]
. (5.67)

In order to construct a local operator, one needs to consider the normal order of this operator

evaluated at z = w, z̄ = z̄. We thus define

GCD
AB (z, z̄) = : GCD

AB (z, z̄;z, z̄) : = : GAB(z)G
CD

(z̄)−GCD
(z̄)GAB(z) :

≡ :
[
GAB(z),G

CD
(z̄)
]

: .
(5.68)
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We show in Appendix C.3 that subject to the requirement of the R-symmetry current explained

above (5.58), the current GCD
AB (z, z̄) satisfies the following OPE:

〈
GCD

AB (z, z̄)
N

∏
n=3

O∗n
∆n,ℓn

(zn, z̄n)

〉

= (−1)a+b+a′+b′C1(b,a)C1(b′,a′)

[
f (A,B, ℓ j,∗ j,∗′j) f̄ (C,D, ℓ j +1,∗′j,∗′′j )

× 1(
z− z j

)a+b′−2
1(

z̄− z̄ j
)a′+b−2

〈
O∗3

∆3,ℓ3
(z3, z̄3) · · ·O

∗′′j
∆ j,ℓ j

(z j, z̄ j) · · ·O∗N
∆N ,ℓN

(zN , z̄N)

〉
− f̄ (C,D, ℓ j,∗ j,∗′j) f (A,B, ℓ j −1,∗′j,∗′′j )

× 1(
z− z j

)a′+b−2
1(

z̄− z̄ j
)a+b′−2

〈
O∗3

∆3,ℓ3
(z3, z̄3) · · ·O

∗′′j
∆ j,ℓ j

(z j, z̄ j) · · ·O∗N
∆N ,ℓN

(zN , z̄N)

〉]
(5.69)

In particular,

GCD
AB (z, z̄)OE ∆,− 3

2
(w, w̄)∼−δ

CD
AB

(−1)a+b+a′+b′C1(b,a)C1(b′,a′)

(z−w)a+b′−2 (z̄− w̄)a′+b−2 OE ∆,− 3
2
(w, w̄)

GCD
AB (z, z̄)OE

∆,+ 3
2
(w, w̄)∼ δ

CD
AB

(−1)a+b+a′+b′C1(b,a)C1(b′,a′)

(z−w)a′+b−2 (z̄− w̄)a+b′−2 OE
∆,+ 3

2
(w, w̄)

(5.70)

where we used the fact that for the gravitino operator, the R-symmetry factor in the double soft

limit is −δCD
AB . Indeed

lim
∆1→0

∆1OAB;∆1,−1(z, z̄)OE,∆,− 3
2
(z1, z̄1) =

z− z1

z̄− z̄1
OABE;∆,− 1

2
(z1, z̄1)

If E = r, A = a, B = b, C = c, D = d, then

lim
∆2→0

∆2Ocd
∆2,+1

(w, w̄)Oabr;∆,− 1
2
(z1, z̄1) =−δ

cd
ab

w̄− z̄1

w− z1
Or,∆,− 3

2
(z1, z̄1)

In all other cases, one can check from the collinear limit in Appendix C.1 that the R-symmetry

factor is −δCD
AB . Let us construct a new current as a linear combination of our previous currents

as follows: (
G̃A

B

)C

D
(z, z̄) :=−

(
1
7

δ
A
D

8

∑
E=1

GEC
BE (z, z̄)+

1
56

δ
A
B

8

∑
E=1

GEC
ED(z, z̄)

)
. (5.71)
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Using the definition of generalized Kronecker delta

δ
a1...an
b1...bn

= ∑
σ∈Sn

sign(σ)δ a1
bσ(1)

. . .δ an
bσ(n)

, (5.72)

we see that
8

∑
E=1

δ
EC
BE =−7δ

C
B ,

8

∑
E=1

δ
EC
ED = 7δ

C
D . (5.73)

This gives us the OPE

(
G̃C

A

)D

B
(z, z̄)OD ∆,− 3

2
(w, w̄)∼ (−1)a+b+a′+b′C1(b,a)C1(b′,a′)

(z−w)a+b′−2 (z̄− w̄)a′+b−2

(
TC

A

)D

B
OD ∆,− 3

2
(w, w̄)

(
G̃C

A

)D

B
(z, z̄)OB

∆,+ 3
2
(w, w̄)∼−(−1)a+b+a′+b′C1(b,a)C1(b′,a′)

(z−w)a′+b−2 (z̄− w̄)a+b′−2

(
TC

A

)D

B
OB

∆,+ 3
2
(w, w̄)

(5.74)

Hence G̃C
A is a candidate which can extend the R-symmetry algebra. But we see an immediate

problem. The OPE of G̃C
A with supercurrents SD(w),S

B
(w̄) is given by

(
G̃C

A

)D

B
(z, z̄)SD(w)∼

(
TC

A

)D

B
lim
∆→ 1

2

∆− 1
2

π
(−1)a+b+a′+b′C1(b,a)C1(b′,a′)

×
∫

d2z1
1

(w− z1)
3

1

(z− z1)
a+b′−2

1

(z̄− z̄1)
a′+b−2OD,∆,− 3

2
(z1, z̄1)

(5.75)

and

(
G̃C

A

)D

B
(z, z̄)SB

(w̄)∼−
(

TC
A

)D

B
lim
∆→ 1

2

∆− 1
2

π
(−1)a+b+a′+b′C1(b,a)C1(b′,a′)

×
∫

d2z1
1

(w̄− z̄1)
3

1

(z− z1)
a′+b−2

1

(z̄− z̄1)
a+b′−2O

B
∆,+ 3

2
(z1, z̄1)

(5.76)

The requirement (5.58) forces a′+b−2 = 0 in (5.75) and (5.76). But then, in view of (C.44),

we get

a+b′−2 = 0 and a′+b−2 = 0 (5.77)

and conclude that the OPE is trivial

(
G̃C

A

)D

B
(z, z̄)SD(w)∼ regular,

(
G̃C

A

)D

B
(z, z̄)SB

(w̄)∼ regular. (5.78)
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5.4 The N = 8 sbms4 algebra

Let us now find out the asymptotic symmetries of the theory. The usual symmetry currents in

the theory are the stress tensor T (z),T (z̄), which are the superrotation generators and P(z, z̄),

which is the supertranslation generator. The modes of these currents generate the bms4 algebra

as described in [186]. As usual the generators of bms4 are the modes of T (z),T (z̄) and P(z, z̄).

Let us expand these currents in modes:

T (z) = ∑
n∈Z

Lnz−n−2, T (z̄) = ∑
n∈Z

L̄nz̄−n−2; (5.79)

P(z, z̄)≡ ∑
n,m∈Z

Pn− 1
2 ,m− 1

2
z−n−1z̄−m−1

(5.80)

As discussed in [186], the modes Pn− 1
2 ,m− 1

2
can be obtained from the modes of the current P(z)

or P(z̄). If we write

P(z) = ∑
n∈Z

Pn− 1
2
z−n−1, P(z̄) = ∑

m∈Z
Pm− 1

2
z−m−1 (5.81)

then

Pn− 1
2 ,−

1
2
= Pn− 1

2
, P− 1

2 ,m− 1
2
= Pm− 1

2
(5.82)

and

Pn− 1
2 ,m− 1

2
=

1
iπ(m+1)

∮
dw̄w̄m+1

[
T̄ (w̄),Pn− 1

2 ,−
1
2

]
=

1
iπ(m+1)

∮
dwwn+1

[
T (w),P− 1

2 ,m− 1
2

]
.

(5.83)

These modes satisfy the usual bms4 algebra:

[Lm,Ln] = (m−n)Lm+n, [L̄m, L̄n] = (m−n)L̄m+n

[Ln,Pkl] =

(
1
2

n− k
)

Pn+k,l, [L̄n,Pkl] =

(
1
2

n− l
)

Pk,n+l,
(5.84)

where m,n ∈ Z and k, l ∈ Z+ 1
2 . In addition, an infinite dimensional extension of the N = 1

supersymmetry algebra was constructed in [7]. The supercurrent was shown to be the shadow

transform of the gravitino operator. In our theory, we have 8 supercurrents SA(z) and their

antiholomorphic counterpart SA(z̄). The OPEs (5.40) show that SA(z) and SA(z̄) are conformal
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primaries of dimension (3
2 ,0) and (0, 3

2) respectively. Consequently, if we expand the supercur-

rents as

SA(z) = ∑
k∈Z+ 1

2

(SA)k

zk+ 3
2
, with (SA)k =

1
2πi

∮
dz zk+ 1

2 SA(z).

SA
(z̄) = ∑

l∈Z+ 1
2

SA
l

zl+ 3
2
, with SA

l =
1

2πi

∮
dz̄ z̄l+ 1

2 SA
(z̄)

(5.85)

then we can write the commutator of these modes with the Virasoro generators as:

[Ln,(SA)m] =
(n

2
−m

)
(SA)m+n, [L̄n,(SA)m] = 0[

Ln,S
A
m

]
= 0,

[
L̄n,S

A
m

]
=
(n

2
−m

)
SA

m+n.
(5.86)

The operator relation (5.41) gives the anticommutator

{(SB)m,S
A
n}= δ

A
B Pmn, m,n ∈ Z+

1
2
. (5.87)

Let us now discuss the requirement of (anti)holomorphicity of the singularity in (5.58). Sup-

pose (G̃A
B)

C
D(z, z̄) has conformal weights5 (h, h̄). Then we can expand the current as

(G̃A
B)

C
D(z, z̄) = ∑

n,m∈Z

{
(G̃A

B)
C
D
}

mnz−m−hz̄−n−h̄, (5.88)

with {
(G̃A

B)
C
D
}

mn =
1

(2πi)2

∮
dz
∮

dz̄ zm+h−1z̄n+h̄+1(G̃A
B)

C
D(z, z̄). (5.89)

Suppose we had an OPE of the form6

(G̃A
B)

C
D(z, z̄)SC(w)∼

1
z−w

1
z̄− w̄

(T A
B )CDSC(w). (5.90)

One can readily check that this would give us the commutator

[
(G̃A

B)
C
D
}

mn,(SC)k

]
= w̄n

(
T A

B

)C

D
{SC}m+k (5.91)

5the scaling dimensions of (G̃A
B)

C
D(z, z̄) can be calculated from those of GAB,G

CD. It is (a+b′−2,a′+b−2).
6exactly the same argument works if we have higher power singularities.
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This is nonsensical since we do not have any w̄ dependence on the left-hand side. Similarly

one can justify the second part of (5.58). So we conclude that the N = 8 sbms4 algebra does

not contain the extension of global R-symmetry algebra. The final algebra is then given by

[Lm,Ln] = (m−n)Lm+n, [L̄m, L̄n] = (m−n)L̄m+n

[Ln,Pkl] =

(
1
2

n− k
)

Pn+k,l, [L̄n,Pkl] =

(
1
2

n− l
)

Pk,n+l,

[Ln,(SA)m] =
(n

2
−m

)
(SA)m+n, [L̄n,(SA)m] = 0[

Ln,S
A
m

]
= 0,

[
L̄n,S

A
m

]
=
(n

2
−m

)
SA

m+n

{(SB)m,S
A
n}= δ

A
B Pmn.

(5.92)

5.5 Conclusion

In this chapter, we have used the CCFT technique to compute the asymptotic symmetry alge-

bra of N = 8 supergravity in asymptotically flat spacetime. The crucial part of our result is the

non-extension of the global SU(8)R R-symmetry algebra. The purely mathematical consider-

ations [390] for N = 2 theory suggests that the infinite-dimensional extension of R-symmetry

is fraught with mathematical inconsistencies. Here, performing a direct asymptotic symmetry

analysis of the supergravity theory using CCFT prescription, we have confirmed that, indeed,

supergravity does not result in such an extension. The rest of the symmetry algebra is as ex-

pected and is presented in (5.92).

Let us end the chapter with relevant open problems. In the seminal work of Hawking

et al., [141], the importance of the infinite number of soft hairs in the context of black hole

microscopics was discussed. The study was further taken forward in [141, 333, 395–397] and

beautifully reviewed in [11]. They emphasized the importance of symmetry enhancements

at the future horizon H+ of the black holes and how both the hypersurfaces7 H+ and I+

carry information of conserved charges, that are in turn important for understanding black hole

microscopics. The study of the present work indicates that the asymptotic soft hairs of the

supergravity theories will not have distinct infinite R-charges; rather, they will only carry the

global fixed number of R-charges. An interesting question that remains to be studied is the

effect, if any, of these R-charges at the horizon and, finally, their importance in the black hole

microscopics. We hope to return to this question in the future.

7I+ denotes the future null horizon
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5.5. Conclusion

In the next chapter, I will introduce a new prescription to study flat spacetime. Here, we

will talk about the flat limit of AdS spacetime, where we are motivated to study the scattering

processes of massive particles (scalars and spinning tensors).
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CHAPTER 6

MASSIVE VECTOR PARTICLES SCATTERING IN ADS SPACETIME

This chapter is based on work (in progress) in collaboration with Nabamita Banerjee, Karan

Fernandes, Arpita Mitra, and Amogh Desai.

6.1 Introduction

Our primary focus is to explore the consequences arising from the asymptotic behavior of

particles within the AdS spacetime. Specifically, we aim to investigate how the double scal-

ing limit1[239, 240] manifests itself in the correlation functions of the boundary CFT. As we

have the relation between the flat space S-matrix and AdS S-matrix under the flat space limit

(R → ∞) of CFT correlators, we may now gain a better understanding of the soft theorems in

AdS. This approach holds significant potential to unveil deeper insights into the AdS S-matrix

coming from the non-perturbative nature of boundary correlators.

In this study, we first take the approach of [236] to compute the “S-matrix" of a QFT with

charged particles in the flat space limit of AdS spacetime, and then we study the implications of

the double scaling limit of [239] on them. Following [236], we get the S-matrix via the Fourier

transform of the position space correlation function in the embedding space, which is defined

only for the on-shell momenta. This Fourier-transformed correlation function is interpreted as

the AdS S-matrix. Let us brief the steps for computing the "AdS S-matrix" below :

• The momentum space correlation function is reduced to the flat space S-matrix in the

flat space limit. This implies that the correlation function will be proportional to the

momentum-conserving delta function, δ (∑Pi), at the leading order of 1/R. As the trans-

lation symmetry is broken at orders of 1/R in the flat space limit for AdS potential, at

the subleading order, we expect the correlation function to be proportional to the deriva-

tives of δ (∑Pi). Here, we define the AdS S-Matrix as the term which is proportional to

δ (∑Pi) only, rather than its derivatives as proposed in [236].

• To compute the full n-point correlation, we make use of the Conformal Ward Identities

or the action of the symmetry generators on our defined AdS S-matrix at O(1/R2). This
1Double scaling limit (DSL) introduced by Banerjee et al. [239, 240] is defined as a limit when the frequency

(ω) of the radiation and the cosmological constant goes to zero (conversely, the AdS radius approaches infin-
ity), simultaneously keeping their ratio constant. This limit physically uses the fact that when the space-time
approaches to flat, these radiations become soft.
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Chapter 6. Massive Vector Particles Scattering in AdS spacetime

implies that the AdS S-matrix has complete information on all of the bulk physics in

terms of the conformal correlators in 1/R2 perturbations theory. We will further continue

this discussion in section 6.4.

• In this work, we look at the exchange diagrams. In [236], authors showed the equivalence

of this formalism with the Mellin space representation, which can be generalized to any

generic correlation function using bulk-to-bulk and bulk-to-boundary propagators. Con-

sidering a bulk point in the patch, we compute the bulk to boundary propagator in 1/R

perturbation theory, and this propagator is interpreted as the momentum space external

leg factor for the Witten diagram. Moreover, we compute the Bulk to Bulk propagator,

which can be used to compute higher-order diagrams.

To get the relevant expressions, we define a local patch on the AdS hyperboloid, which is

centered around a specific local point CA = (⃗0,R), A = 0, · · · ,d + 1, in the large R limit. This

fixes a conformal frame for the momentum space correlator [236]. Once we fix the gauge for

the AdS momenta variables, all the bulk processes are confined and localized within this frame

surrounding the point C, where we represent the momenta variable as the flat space momenta

and the isometry algebra of the flat space is defined around this point. This choice of gauge will

become evident in the following sections. While taking the flat space limit R → ∞, this point

holds a distinct significance. Our work involves an extension of the previous work done by the

authors in [236] in the context of vector fields.

The chapter is organized as follows. In section 6.2, we introduce the momentum space

formalism for AdS S-matrix as discussed in [236]. This will give a general prescription for

scattering in AdS and how we will get the flat space S-matrix under the flat space limit. Section

6.3.1 explains the construction of Bulk to Boundary propagator for massive vector fields under

R → ∞ limit. In section 6.3.2, we constructed the Bulk-to-Bulk propagator for the massive

vector field up to sub-leading order and found the iterative solutions to the propagator equation

of motion up to sub-leading order. In section 6.4, we explain the procedure to compute AdS

S-matrix and enlighten the reader about the other prescriptions that one can use. In section

6.5, we conclude the chapter with some motivation towards the application in the context of

some low-energy effective field theories, which are instrumental considering the demand in

theoretical studies.
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6.2 Notation and Setup

This section aims to establish standardized notations and terminologies for subsequent discus-

sions. Here, we closely follow the momentum space prescription for defining an AdS “S-

matrix" laid forward by [236]. The main idea is to work in the Fourier dual space of the

embedding space coordinates for theories in AdS and the dual CFT. This has a few advantages,

the most prominent being that the AdS isometries are manifest in this description.

Let us begin with the description of the embedding space of AdS spacetime. Both the

AdSd+1 and its boundary dual CFTd are embedded in a R2,d space with metric η̃AB ≡ diag(−,+, . . . ,+,−),

A = 0, · · · ,d+1. Considering two vectors in the embedding space as XA,WA and R as the AdS

radius, the hypersurface X2 =−R2 describes the AdS manifold and the dual boundary CFT lies

on the null cone defined by W2 = 02. In this space, the AdS isometry generators are linear and

are given by,

MAB = XA
∂

∂XB −XB
∂

∂XA . (6.1)

Similarly, the conformal symmetry generators are given by,

M̃AB = WA
∂

∂WB −WB
∂

∂WA . (6.2)

Note that the structure of the two sets of generators are precisely identical, owing to the fact

that the two manifolds possess the same isometry group, i.e., the rotation group SO(d,2).

We now look at the Fourier transform of position-dependent correlation functions defined

on the AdS manifold. We require that the Fourier dual function is defined only over the AdS

manifold and has no contribution from the region of the embedding space beyond AdS. For

this, we will demand that the Fourier integral over the entire embedding space has support only

over the AdS manifold such that contribution to the Fourier integral due to regions away from

the AdS vanishes.

We put such a restriction mathematically by introducing a δ (X2 +R2) in the integral. For

an n-point position space correlation function F(X1, · · ·Xi, · · · ,Xn), we define its Fourier trans-

2CFTs are better understood by transforming to a space where the conformal group is realized as the group of
linear isometries [398, 399]. This is accomplished by formulating CFTs on the projective null cone in two higher
dimensions where it is only the action of the Lorentz group [400–402]. Consider a d +2 dimensional embedding
space Rd,2 with flat metric ds2 = ηµν dX µ dXν = −dX+dX−+ dx2, where X µ = (X+,X−,xa), a = 0, · · · ,d − 1.
The null cone defined by X2 = 0, is a SO(d,2)-invariant subspace of Rd,2, and the projective null cone PN is
obtained by quotienting by the scale Γ = X .∂X . Hence, PN =

{
X ∈ Rd,2|X2 = 0

}
/Γ.
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form F̃(P1, · · ·Pi, · · · ,Pn), where Xi’s represents the position space vector insertions in the

embedding space and Pi’s are the Fourier dual variables for Xi. We have

F̃(P1, · · ·Pi, · · · ,Pn) =
∫ n

∏
i=1

dd+2Xi δ (X2
i +R2) eiPi·XiF(X1, · · ·Xi, · · · ,Xn) (6.3)

In the given expression, the integration is carried out over the AdS hyperboloid. Here, we

use the shorthand notations for the correlations in position and momentum space as F(Xi) and

F̃(Pi) respectively, which are functions of d+2 variables. Note that the action of the symmetry

generators is linear in nature, which means,

MABF̃(Pi) =
∫ n

∏
i=1

dd+2Xi δ (X2
i +R2)F(Xi) MAB eiPi·Xi. (6.4)

Here, the generator has bypassed the measure, the delta function, and the correlation function in

position space because the measure must be invariant under symmetry transformation. Hence

[MAB,X2
i ] = [MAB,F(Xi)] = 0, (6.5)

where the first commutator defines AdS isometry, and the second manifests the demand that

the correlation functions must be invariant under symmetry transformations.

Substituting Eq. (6.1) in Eq. (6.4) we get,

MABF̃(Pi) =
∫ n

∏
i=1

dXi δ (Xi
2 +R2)F(Xi)

(
XAPB −XBPA

)
eiPi·Xi

=
∫ n

∏
i=1

dXi δ (X2
i +R2)F(Xi)

(
PB

∂

∂PA
−PA

∂

∂PB

)
eiPi·Xi

=
(
PB

∂

∂PA
−PA

∂

∂PB

)∫ n

∏
i=1

dXi δ (X2
i +R2) F(Xi)eiPi·Xi

=
(
PB

∂

∂PA
−PA

∂

∂PB

)
F̃(Pi)

(6.6)

Hence, the symmetry generators in momentum space up to an overall negative sign are given

by,

MAB =
(
PA

∂

∂PB
−PB

∂

∂PA

)
. (6.7)

Substituting the Fourier transformed correlator of Eq 2.3 in the LHS of the above relation, one
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can also check that the momentum space correlation function satisfies the property,

(
∂

∂Pi
· ∂

∂Pi
−R2

)
F̃(Pi) = 0 (6.8)

This is a constraint on the momentum space correlators, which is used to reduce the degrees

of freedom from d + 2 to d + 1. This can be incorporated by fixing Pi,d+1 = 0.3 Then F̃

is an unconstrained function of the d + 1 variables Pi,a, a = 0,1, . . . ,d. This momentum is

now unconstrained and will henceforth be denoted by Pa. We will refer to this as the “AdS

momentum". The momentum space symmetry generators can now be written as,

Mab = Pa
∂

∂Pb −Pb
∂

∂Pa , Ma,d+1 = Pa
∂

∂Pd+1 −Pd+1
∂

∂Pa = iPa

√
R2 − ∂

∂P
· ∂

∂P

Notice that, in the flat space limit (R→∞), Ma,d+1 become translation symmetry generators

(or momentum Pa) up to a factor of R. Moreover Mab behave as generators of rotation in the

Xa −Xb plane and since a,b = 0,1, . . . ,d, we have (d + 1)d/2 such generators. We refer the

readers to Appendix D.2 for the algebra of the AdS symmetry group in the large R limit. Thus,

we recover the Poincaré group from the AdS isometry group in the flat space limit of AdS. This

was expected because in the flat space limit of AdS, we must be able to recover all the features

and physics of a flat space from equivalent features of AdS.

In 3+ 1 dimensions, the Poincaré group has two Casimirs, namely, mass and spin, which

have two distinct eigenvalues. However, in the presence of AdS potential, there exists only one

physically relevant Casimir whose eigenvalues can be written as M2R2 = ∆(∆−d)+ l(l +d −

2), where ∆(∆−d) corresponds to the mass and l(l +d −2) as the spin part of the Casimir in

Poincaré group. Hence, AdS Casimir has information about both mass and spin, which was

expected as translation symmetry breaks down due to the AdS potential.

6.2.1 Momentum Space CFT Correlation in flat space limit

Here our objective is to retrieve the flat spacetime momentum signature. To accomplish this,

it is essential to constrain the results on AdS hyperboloid at the slice Pi,d+1 = 0. By doing so,

we can precisely capture and analyze the momentum vector signature in the context of the flat

space momentum.

In the large R limit, we have the coordinates defined in the local patch around C as Xa,

3There can be other such choices, but this seems to be the simplest one and works well for our purpose [236].
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a = 0, · · · ,d, and the local momentum defined to be Pa. The embedding space coordinates are

X = (Xa,(R2 +XaXa)1/2). After integrating out the Xd+1 integral in Eq. (6.3), the bulk n-point

correlation function can be written as,

F̃(Pa) =
∫ n

∏
i=1

dd+1Xa,i√
R2 +Xa,iXa

i
eiPa,i·Xa,iF(Xa,(R2 +Xa,iXa

i )
1/2) (6.9)

This transformation is defined for the off-shell momenta Pa. Here, we need to define a Fourier

transform for the on-shell momenta such that the CFT operator insertions behave as the on-shell

asymptotic states for scattering in AdS. On account of this, we call this momentum space CFT

correlation to be the “AdS S-matrix".

In AdS/CFT, using the “extrapolate" dictionary [403, 404], we can relate the bulk field φ(X)

in AdS to the boundary CFT operator O(W) with conformal dimension ∆ as,

O∆(W) = lim
α→∞

α
∆

φ(X = αW +O(α0)). (6.10)

Here W is the embedding space vector labeling a point at the boundary such that W2 = 0, and X

is a point in AdS satisfying X2+R2 = 0. O(α0) can be a vector in AdS hyperboloid orthogonal

to the lightcone vector W [236].

Now, the Fourier transform of the boundary CFT correlation function G(Wi) following the

above dictionary can be written as,

G̃(Pi) =
∫ n

∏
i=1

dd+2Wi δ (W2
i ) eiPi·Wi G(Wi) (6.11)

This Fourier integral looks the same as in Eq.(6.3) except the support, which is only over the

CFT manifold, which is the projective null cone, W2
i = 0 other than the AdS hyperboloid. This

function G̃(Pi) satisfies,
∂

∂Pi
· ∂

∂Pi
G̃(Pi) = 0. (6.12)

As we have seen, this condition imposes a constraint on P , which allows us to set Pd+1 = 0

and P = (Pa,0) like in AdS.

Let’s define a scale covariant function Ĝ(P̂i) in momentum space, which is a function of

the unit momentum vector P̂i ≡ Pi/|Pi|. The conformal covariance of the CFT correlation
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function in Fourier space implies

Ĝ(P̂i) = G̃(Pi)
(
|Pi|d−∆i

)
(6.13)

It’s clear that as long as ∆ ̸= d, i.e., for massive particles in the bulk of AdS, this new function

depends only on the unit vector P̂i.

We have to fix the gauge4 |P|2 =−M2 = |Pa|2, such that the correlation function will be a

function of only on-shell AdS momenta Pa. Hence, we can construct the on-shell asymptotic

states with the support of the Fourier transform only over the boundary.

This analysis implies that the on-shell asymptotic states are constructed by the Fourier

transform of the boundary data of the AdS space [236]. So, whenever we compute correlation

functions with the conformal momenta constraint P2 =−M2, they will be “on-shell", and in the

flat space limit of these AdS/CFT correlation functions, we should be able to retrieve flat space

S-matrix elements. It has been shown explicitly for some scalar Witten diagrams [236]. We

have extended this to massive vector fields. In momentum space, the boundary n-point function

is characterized as the Fourier transform of the corresponding position space n function. In the

limit R → ∞, this correlation gives us the conformal momentum space observables in the flat

space.

To see the effect of the large R, we have to scale the vector Wi → RWi in Eq (6.11), and

fix the gauge by using the condition, Pd+1 = 0. Here, the integration support for both W1 and

W2 are on the future null cone5. The explicit derivation of this correlation is given in Appendix

[236, A.1].

6.3 Proca theory in AdSd+1

In this section, we will consider a massive vector field in AdS and derive its bulk-to-boundary

and bulk-to-bulk propagators in momentum space. The AdSd+1 spacetime can be described

by embedding it in (d + 2) dimensional Minkowski spacetime ηAB = diag(−,+, · · · ,−). The

coordinates of AdSd+1 of length R is a set of points X ≡ (X0,X1, · · · ,Xd) and the spacetime

4Since this function does not depend on the norm of Pi, we can gauge fix the momenta using the condition,
|Pi|2 =−M2 = |Pi|2. Proper justification for this choice of gauge is given using conformal Casimir and from the
boundary to bulk propagator in [236, Section 3.1]

5δ (W 2
i ) in the integrand tells us that we restrict the non-zero contributions of the Fourier integral over the null

cone.
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interval is given by,

ds2 =−
(
dX0)2

+
(
dX1)2

+ · · ·+
(

dXd
)2

−
(

dXd+1
)2

(6.14)

In embedding coordinates, AdSd+1 is a hyperboloid satisfying X AXA =−R2 with its boundary

given by the projective null cone WAWA = 0. To distinguish the AdSd+1 spacetime metric, we

define W = Xd+1 such that Eq.(6.14) takes the form

ds2 = ηµνdX µdXν −dW 2 (6.15)

The hyperboloid constraint condition further implies that W 2 = R2 +X2, with X2 = XµX µ .

Since we are interested treating 1/R as a perturbative parameter and studying corrections up to

1/R2 order, we will consider the metric and inverse metric as,

gµν = ηµν −
XµXν

R2 +X2 , gµν(X) = η
µν +

X µXν

R2 +O
(
R−3) (6.16)

The covariant derivatives and the affine connection are given by

∇X = ∂X −Γ, Γ
γ

αβ
=− 1

R2 X γgαβ . (6.17)

We note that the connection in Eq.(6.17) is exact to all orders in R−1. We will now consider a

massive vector field Aµ with mass M in AdSd+1, which is described by the Proca action on the

AdS background [405, 406],

SM =−
∫

dd+1X
√
−g
[

1
4

FµνFµν +
1
2

M2AµAµ

]
, (6.18)

where Fµν = ∇µAν −∇νAµ . The action provides the following equation of motion for Aµ ,

∇µFµν −M2Aν = 0 , (6.19)
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which on using Eq.(6.16) and (6.17) gives 6,

[
gµν(∇

2
X −M2)−∇ν∇µ

]
Aν = ∂νAν − 1

R2 Xν
ηνρAρ +O(R−3) = 0. (6.20)

This equation of motion will be used to derive the bulk-to-bulk and bulk-to-boundary propa-

gators for the massive vector field. Lastly, we note that the Proca field by virtue of Eq.(6.20)

further satisfies the condition

∇µAµ = 0. (6.21)

6.3.1 Bulk-to-boundary propagator

In general for AdS spacetimes in the embedding formalism, the bulk-to-boundary propagator

between two fields inserted at a local bulk point X and a point on boundary W is proportional

to (W ·X )−∆. For vector fields, we have [398, 406–408].

Eνβ

∆
(X ,W) =

(
η

νβ − WνX β

(W ·X )

)
1

(−2W ·X )∆
(6.22)

The corresponding expression in momentum space can be derived by performing an appro-

priate Fourier transform on the boundary coordinate, i.e.

Π̃
νβ (P ,X ) =

∫
dWδ (W2)eiP·WEνβ

∆
(X ,W) (6.23)

We now recall some salient properties of (6.23) that will provide for external states in

the AdS S-matrix with fixed momenta. These are identical to properties noted in [236] for

the bulk-to-boundary propagator for massive scalar fields. From the homogeneity property

(λW ·X )−∆ = λ−∆ (W ·X )−∆, it follows that

Eνβ

∆
(X ,λW) = λ

−∆Eνβ

∆
(X ,W)⇒ Π̃

νβ (λP ,X ) = λ
∆−d

Π̃
νβ (P ,X )

⇒ Π̃
νβ
(
P̂ ,X

)
= |P|d−∆

Π̃
νβ (P ,X ) (6.24)

The last transformation in (6.24) ensures that we can derive vector bulk-to-boundary prop-

6This also follows from the group theoretic point of view when one considers that the AdS Casimir M2R2 =
∆(∆−d)+ l(l+d −2) acts as the Laplacian in embedding space coordinates whose eigenvalue is the mass of the
field.
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agators as a function of the orientation P̂ = P
|P| while fixing the magnitude |P|. In the case of

massive fields setting Pd+1 = 0 such that P2 =−M2 = P2. We note that this property follows

from the leading contribution of (6.23) coming from W = (W,1), with W µ = iPµ

M in the large

R limit as noted in [223]. In this way, the formal Fourier transform to “momentum" space in

embedding coordinates can be restricted to fixed on-shell momenta states.

Let us here discuss the massless limit briefly. Generically the massless limit is defined as

∆→ J+d−2 for any spin-J particle [406]. Thus for spin 1 massless limit we have ∆→ 1,d−1.

In this case, the above scaling relation still holds with P̂ being the direction of the mull vector

that also has magnitude zero.

In setting Pd+1 = 0, the embedding position takes the form X =
(

X ,
√

X2 +R2
)

and this

provides a perturbative expansion in R−1 about a flat spacetime patch in the strict R → ∞ limit.

Henceforth, we will consider this case and denote the relevant bulk-to-boundary propagator of

(6.23) by Π̃νβ (P,X). We can recover asymptotic plane wave states from (6.23) in the flat patch

to leading order in R−1 by working in the limit of large ∆ = MR ≫ 0. On rescaling W → RW

and using W = (W,1) in (6.23) we get

Π̃
νβ (P ,X) =

R∆−d

2π

∫
dW

∫
dλ eiRλ (W 2−1)eiRP.W(

η
νβ − WνX β

(W ·X )

)
(−2)−MR

(
W ·X −

√
X2 +R2

)−MR
, (6.25)

with a λ integral representation for the Dirac delta function. In the large R limit, the integrand

contribution from the second line of (6.25) is approximated by

(
W ·X −

√
X2 +R2

)−MR
≈ (−R)−MReMW.X (6.26)

which notably is not exponential in R, unlike the integrand contribution in the first line of (6.25).

The exponential terms provide the saddle contribution W µ
∗ = iPµ

m in the large R limit. Using

this saddle contribution in 6.25 and using 6.26, we get

Π̃
νβ (P ,X) ∝ α

νβ eiP.X . (6.27)

Hence in the large R limit, the leading contribution from the Fourier transformed bulk-to-

boundary propagator are plane wave states. However, the derivation of perturbative corrections
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in R−1 from the Fourier transform, which will come from expanding X , is more involved using

the saddle approximation about large R to the Fourier transform.

A simpler alternative towards perturbative R−1 corrections in the bulk-to-boundary prop-

agator comes directly from the source-free equations of motion that it satisfies in embedding

space. We will solve the propagator in the large R limit with an iterative treatment to derive

R−1 perturbations about the leading flat space limit. From Eq.(6.20), the bulk-to-boundary

propagator Π̃νβ (P;X) satisfies the following differential equation7,

[
gµν

(
∇

2
X −M2)−∇ν∇µ

]
Π̃

νβ (P;X) = 0. (6.28)

After a bit of simplification using the relation in D.11, we have

[(
ηµν −

XµXν

X2 +R2

)
(∇2

X −M2)−∂µ∂ν +
Xν∂µ

R2 +
(d +2)ηµν

R2

]
Π

νβ +
Xβ ηρσ ∂µΠρσ

R2 = 0,

(6.29)

with the embedding space, Laplacian has the following expansion

∇
2
X Π

νβ = gρσ
∇ρ∇σ Π

νβ = ∂
2
Π

νβ − 1
R2

[
−XρXσ

∂ρ∂σ Π
νβ +2Π

νβ +2Xν
∂αΠ

αβ

+2Xβ
∂αΠ

να − (d +1)Xα
∂αΠ

νβ

]
.

As noted previously, the bulk-to-boundary propagator can be derived as a function of the mo-

mentum direction. We accordingly define η = iP̂ ·X , with the unit momentum vector P̂i =
Pi
|Pi|

and derive the solution for Π̃νβ (η). The perturbative solution of Eq.(6.29) then takes the form

Π̃
νβ (η) = eiMη

[
f νβ

1 +
1

R2 f νβ

2 +O
(
R−3)] . (6.30)

It is evident from Eq.(6.29) that the propagator has two solutions depending on the choice

P = ±iMP̂. On physical grounds, we discard the negative energy solution from the onset.

Therefore we set eiMη = eiP·X . We have provided the detailed derivations of the leading and

subleading contributions of 6.30 in Appendix D.3. In the following, we summarize the main

steps and quote the results.

7Traditionally, there is a delta function on the R.H.S. of the above Green’s function equation given in Eq.(6.28).
However, the boundary field operator is in the momentum space, so one should have expected it to contain a eiP·X

term. Notice that the two field insertions lie on different manifolds, meaning their positions never coincide. As a
result, the delta function becomes redundant, and there is no phase factor.
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Substituting Eq.(6.30) in Eq.(6.29), we obtain the leading order equation,

[
ηµν(∂

2
X −M2)−∂µ∂ν

]
eiMη f νβ

1 = 0. (6.31)

Eq.(6.31) can be readily solved to get

f νβ

1 = η
νβ − P̂ν P̂β , ηµν f µν

1 = d, Pν f νβ

1 = 0. (6.32)

To next order, we have an equation with a 1/R2 correction, which follows the perturbative

expansion of Eq.(6.29)

[
ηµν(∂

2 −M2)−∂µ∂ν

]
f νβ

2 eiM·η + f νβ

1

[
ηµν

(
d +(X ·∂X)

2 +(d +1)X ·∂X

)
+Xν∂µ

]
eiM·η

−
{

2ηµν

(
Xν f αβ

1 ∂α +Xβ f αν
1 ∂α

)
−dXβ

∂µ

}
eiM·η = 0

(6.33)

We can solve this equation by substituting the leading order solution for f νβ

1 , which acts as

an effective source for the first order perturbed solution f νβ

2 . Additionally, we assume a gen-

eral ansatz for f νβ

2 as a linear combination of all possible two-index tensor quantities, i.e.

ηνβ ,PνPβ ,XνXβ ,PνXβ ,XνPβ . The solution for f νβ

2 in Eq.(6.33) then follows from solutions

for the coefficients in the linear combination ansatz, and we find

f νβ

2 =

[
−(d +2)(P̂ ·X)

4M
− d(P̂ ·X)2

4
+

M(P̂ ·X)3

6

]
f νβ

1

− (d +1)
M

Xβ P̂ν +
1
M

Xν P̂β +
d

M2 P̂β P̂ν .

(6.34)

Hence, the bulk-to-boundary propagator as a function of (P,X) up to the first subleading cor-

rection in R−2 takes the form

Π̃
νβ (P,X) =eiP.X

[
f νβ

1 +
1

R2

(
i(d +2)

4M2 (P ·X)+
d

4M2 (P ·X)2 +
i

6M2 (P ·X)3
)

f νβ

1

+
1

R2

(
i(d +1)

M2 Xβ Pν − i
M2 XνPβ − d

M4 Pβ Pν

)] (6.35)

While a direct M → 0 limit results in a divergence in (6.34), it is interesting to note a
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possible double scaling approach that could address the massless limit. If we take R → ∞ and

M → 0, keeping the product MR= γ as a large fixed number while also retaining the orientation

P̂ fixed,

Π̃
νβ = eiP̂.X

[
f νβ

1 +
d
γ2 P̂β P̂ν

]
. (6.36)

However, we would now require the scaling dimension of the boundary field to satisfy

∆(∆−d) = γ
2 − (d −1) , (6.37)

which implies ∆ has two solutions. By imposing unitarity we get,

∆ =
d
2
+

1
2

√
(d −2)2 +4γ2 . (6.38)

Hence, the case of setting MR = γ and allowing for a simultaneous massless and flat spacetime

limit differs from the conventional assumption for massless vector fields in AdS, namely that

they are dual to CFT operators with conformal dimensions either 1 or d−1. Next, we consider

the derivation of the bulk-to-bulk propagator for massive vector fields.

6.3.2 Bulk-to-Bulk propagator

The bulk-to-bulk propagator is a two-point correlation function of a given field theory, inter-

preted physically as the amplitude for its propagation between any two points X and Y in the

bulk of AdS. We will be interested in the propagators for massive vector and scalar fields, which

are defined using the time-ordered product (T-product).

X1 X2
: G(X1,X2)≡⟨T{Φ(X1)Φ(X2)}⟩.

µ ν

X1 X2
: Π

µν(X1,X2)≡⟨T{Aµ(X1)Aν(X2)}⟩.

Figure 6.1: Definition of vector and scalar propagators in Bulk AdS.

The momentum space bulk-to-bulk vector propagator, with one of the positions Fourier

transformed to momentum space, will be important in our consideration of Witten diagrams.

The bulk-to-bulk propagator gBB(P̃,X) for a scalar field in AdS involving R−2 corrections was

derived in [236]. While P̃ is defined about a locally flat region within AdS in the large R limit,
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it need not be on-shell as in the bulk-to-boundary propagator case. To derive Gµν

BB(P̃,X) for

the massive vector field, we work with the equations of motion satisfied by the position space

bulk-to-bulk propagator

[
gµν(∇

2
X −M2)−∇ν∇µ

]
Gνβ

BB(Y,X) =− 1√
g(X)

δ
β

µ δ (Y ,X) , (6.39)

and Fourier transform Y to momentum space to find

[
gµν(∇

2
X −M2)−∇ν∇µ

]
Gνβ

BB(P,X) =− 1√
g(X)

δ
β

µ eiP·X (6.40)

As in the derivation of the bulk-to-boundary propagator, we consider Gνβ

BB perturbatively

expanded in powers of R−2 such that

Gνβ

BB = eiP·X
[

Gνβ

BB(1)+
1

R2 Gνβ

BB(2)+ . . .

]
(6.41)

The leading contribution can be derived using the ansatz

Gνβ

BB(1)(P,X) = (A(P,X)ηνβ +B(P,X)PνPβ ) eiP.X .

On substituting this in the leading term of Eq. 6.40, we find the solution

Gνβ

BB(1)(P,X) =

(
η

νβ +
PνPβ

M2

)
eiP·X

P2 +M2 , (6.42)

which is the leading contribution of the bulk-to-bulk massive vector propagator in a locally flat

region of the AdS spacetime. The equation to solve for its subleading R−2 correction follows

from using Eq. 6.41 in Eq.(6.40), which provides

[
ηµν(∂

2 −M2)−∂µ∂ν

]
eiP·X Gνβ

BB(2)−2ηµνXν(∂αeiP·X)Gαβ

BB(1)

+
[
−XµXν(∂

2 −M2)+ηµν

(
d +(X ·∂X)

2 +dX ·∂X

)
+Xν∂µ

]
eiP·X Gνβ

BB(1)

−Xβ (∂αeiP·X)Gαν

BB(1)+ηρσ Xβ (∂µeiP·X)Gρσ

BB(1) =−δ
β

µ

X ·X
2

eiP.X .

(6.43)

We can solve this equation by introducing an ansatz for Gνβ

BB(2) as a linear combination of all

possible two index tensors (X µXν , PµPν , X µPν , XνPµ and ηµν ). The coefficients are scalar
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functions of (X ,P), which include X2, X .P, P2 and their powers. On account of the source

terms, from X2 and those from the leading solution Gνβ

BB(1), the most general ansatz for Gνβ

BB(2)

needed to solve Eq. (6.43) takes the form

Gνβ

BB(2)(P,X) =
eiP·X

P2 +M2

(
C(P,X)ηνβ +XνXβ +D(P,X) XνPβ

+E(P,X) Xβ Pν +F(P,X) PνPβ +
X ·X

2

(
η

νβ +
PνPβ

M2

)) (6.44)

with C(P,X), D(P,X), E(P,X) and F(P,X) the coefficients. Using Eq.(6.43), we find the fol-

lowing coefficient solutions

C(P,X) =− (P ·X)2

(P2 +M2)
+

i(P ·X)
(
(2+d)M4 +(−3+d)M2P2 −P4)

M2(P2 +M2)2

+

(
−8M2P2 +d(M4 −P4)

)
(P2 +M2)3

(6.45)

F(P,X) =− (P ·X)2

M2(P2 +M2)
+

i(P ·X)
(
(7+d)M2 +(3+d)P2)
M2(P2 +M2)2

+
(8+3d)M4 +4dM2P2 +dP4

M2(P2 +M2)3

(6.46)

D(P,X) =
(−i+P ·X)

M2 = E(P,X) (6.47)

Substituting Eqs.(6.45-6.47) in Eq.(6.44), we get the desired bulk-to-bulk vector propagator

solution up to subleading R−2 corrections. In the following section, we will use the propagators

in the computation of Witten diagrams and

6.4 AdS S-matrix

In the previous two sections, we computed the two propagators needed to compute correlation

functions in the boundary CFT. Following the prescription given in [236] for massive scalar

fields, in this section, we will define an “AdS S-matrix" for massive vector fields from the

correlation functions.

In flat space QFTs, the protocol for computing the S-matrix for vector fields consists of

applying LSZ prescription on the momentum space correlation functions and contracting them

with polarization vector to get the final S-matrix element. In doing so, one keeps in mind the
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transversality of the external momenta and the polarization vector. Here, we follow the same

prescription considering a theory of a massive vector field with a perturbation to a flat space

with a small negative cosmological constant.

We have the bulk S-matrix defined as the n-point correlation,

A(P1,P2, . . . ,Pn) = εµ1(P1)εµ2(P2) . . .εµn(Pn) Fµ1µ2...µn(P1,P2 . . .Pn) (6.48)

where εi(Pi) is the polarization corresponding to external momenta Pi and Fµi(Pi) is the cor-

relation function that is computed using the Witten diagrams and the propagators in Eq.(6.34)

and Eq.(6.44). Notice that we haven’t defined an LSZ prescription in this procedure as the

external particles are already on-shell, P2
i = −M2. Now, using the shorthand notation A(Pi),

the quantity in Eq.(6.48) has complete information about the scattering process. As in [236]

and as mentioned before, this “S-matrix" is invariant under the action of symmetry generators

MAB.

After contracting the correlation function with polarization vectors, the resultant quantity

A(Pi) can be expanded as,

A(Pi) =
∫

dXd+1
[
A(0)(Pi,εi)+ [A(1)(Pi,εi)]

µ1Xµ1 +[A(2)(Pi,εi)]
µ2µ3Xµ2Xµ3 + . . .

] n

∏
i

eiPi·X

(6.49)

where A(k)(Pi,εi) generates k derivative terms acting on the momentum-conserving delta func-

tion in the momentum space. The first term in the above expression is proportional to a delta

function of momenta, while the other terms are proportional to the derivatives of the delta

function.

Here, one can see the explicit dependence of X factors in the amplitude. These terms are

expected as compared to the flat space QFT results. In the flat space case, the delta function

of momentum is the manifestation of space-time translation symmetry. In the case of AdS, the

same is broken, and hence, in our result, these factors show up at O(1/R2).

The X µ in this expression can be replaced with −i∂Pn acting on the exponential.

A(Pi) =
∫

dXd+1
[
A(0)(Pi,εi)+ [A(1)(Pi,εi)]

µ1
(
− i

∂

∂Pµ1
n

)
+ · · ·

] n

∏
i

eiPi·X (6.50)

In principle, one could use any external momenta to get the same result; however, this choice

for n-th momenta is more convenient. Substituting Pn = ∑
n
i Pi −∑

n−1
j Pj, and P = ∑

n
i Pi, we get
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the following identity,

∫
dd+1X (P ·X) eiP·X =−i

∫
dd+1X X µ ∂

∂X µ
eiP·X

= i(d +1)
∫

dd+1X eiP·X = i (d +1)δ (P)
(6.51)

Here, the total derivative terms vanishes by choosing the appropriate boundary conditions.

Using this identity, one can remove the ambiguity of X dependence from Eq.(6.50) and the

momentum space n-point correlation thus can be written as,

A(Pi) =
[
A(0)(Pi,εi)+ [A(1)(Pi,εi)]

µ1
(
− i

∂

∂Pµ1
n

)
+ . . .

]
δ
(
∑

i
Pi
)

(6.52)

Following the arguments given in [236], we identify the leading order S-Matrix A(0) as the

“AdS S-matrix". As has been explicitly shown in [236], this expression is related to the higher

order S-matrix terms via Ward identities or the conformal covariance of the correlation function

A(Pi) under the action of the symmetry generators Ma. Hence, A(0) as the AdS S-matrix is

the only independent data needed to compute the momentum space correlator A(Pi) in the

1/R perturbation theory. In our work ([409]: in preparation), we have used this procedure to

compute the four-point exchange diagram.

6.5 Conclusion

Building upon the formalism used in [236], we have studied the properties of conformally

covariant momentum space representations of the CFT correlators, alternatively referred to as

“AdS S-Matrix" in the presence of massive vector fields. Under the flat space limit, where

we keep the masses of the particles fixed under AdS radius R → ∞, we have constructed the

bulk-to-boundary propagator, and the bulk-to-bulk propagators for the massive vector fields

perturbatively up to the sub-leading order in large R limit. To compute the n-point function of

the currents in the boundary CFT, we need to compute the Witten diagrams [228], where the

boundary of AdS is sketched as a circle, and the wavy lines are the gauge boson propagators.

To find the amplitude corresponding to these diagrams, we need to have the bulk vertices

and the AdS propagators for the bulk fields. The simplest one of such diagrams is the contact

diagram, which is an integrated diagram over a n-point vertex [410]. For massive vector fields,

the bulk-to-bulk propagator is found in Eq.(6.44). Due to translational symmetry breaking in

AdS, we must compute the Witten diagrams in the AdS momentum space for 1/R perturbation
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theory [236]. We expect the result to reduce back to the flat space Feynman diagrams compu-

tation in R → ∞ limit. Our next goal is dedicated to finding the four-point Witten diagram in an

effective theoretical model in AdSd+1 spacetime.

The results of our findings are consistent with the analysis for massive scalar fields done

by the authors in [236]. In this direction, our work will help us to understand the properties

of the S-matrices in curved spacetimes. To do this, we are required to compute all the n-point

diagrams up to O(1/R2). This can be done in principle using the propagators we have com-

puted; however, that would be a tedious task. One way to simplify this would be to reconcile

our analysis with the large gauge ward identity methods to deal with soft limits. A consequence

of this would be the extension of the Infrared (IR) Triangle (which is well-known in flat space)

to AdS field theories.

In the next chapter, I will conclude this thesis with the conclusions of and outlooks from

each of the chapters separately and will highlight our biggest motivation for all these studies in

line with holography.
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CHAPTER 7

CONCLUSION

In this thesis, I put some recent updates on the modernized techniques used to understand flat

space holography. Among many others, we were focused on the recently developed technique

of celestial holography. Our focus is on finding the symmetries of asymptotically flat space-

times. In Chapter 2, I illuminated the Celestial conformal field theoretic techniques, where

I defined the celestial map at the level of wavefunctions, which helps us to map the scatter-

ing amplitude into the conformal fields correlators which transforms as primary fields under

SL(2,C) conformal symmetry group of the boundary CFT.

I stated the rules for finding the asymptotic symmetries and corresponding symmetry al-

gebra in any theory using this technique, given the two most important ingredients, like the

soft and collinear limits of the celestial scattering amplitudes. In certain theories, this tech-

nique turned out to be very helpful. Another motivation was the simplicity of the techniques,

provided we have all the symmetries in theory. It is simpler than the usual killing vector ap-

proach. ence, computationally, it is desirable to develop a general algorithm for constructing

the extensions of BMS algebra using the CCFT technique.

In the subsequent chapters of this thesis, I list the case studies that we did in the case of the

bosonic Einstein-Yang-Mills theory and in supergravity theory. Along with this, we highlighted

some use of the known double copy formalism as a requirement for our studies, which helps

in computing quantum gravity amplitudes from gauge theory. Then, to conclude this thesis,

I will light up our recent developments in understanding flat space from the perspective of an

observer sitting in AdS spacetime itself.

Here is a summary of the conclusions from each chapter.

• In Chapter 3, we discussed the case of Einstein Yang-Mills theory, where our primary

job was to construct the celestial conformal operators corresponding to the symmetry

currents corresponding to the gravitons and gauge bosons in the theory. Due to the non-

abelian nature of the symmetry generators, there was a demand to construct the soft

limit independent composite current conformal operator. The shadow transformation

helps us to construct the energy-momentum tensor (quasi-primary conformal operator of

dimension ∆ = 0) of our CCFT from the shadow ∆ = 2 conformal primary operator. The
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CCFT OPEs between the gauge boson operators with our defined energy-momentum

tensor results in the correct Virasoro primaries. The structure of these celestial OPEs

of the symmetry operators generating BMS put forth the relation to the extended BMS

algebra bms4 and in our case of EYM, the extension, eymbms4:

eymbms4 = Superrotations⊎ [Supertranslations⊕u(N)-gauge transformations] .

Hence, the above algebraic statement showed our usual bms4 with a symmetry extension

of u(N)-gauge transformation. Similarly, for Einstein-Maxwell, we needed to switch off

the color degrees of freedom to result in the extended algebra of embms4 corresponding

to u(1) gauge-symmetry:

embms4 = Superrotations⊎ [Supertranslations⊕u(1)-gauge transformations] .

The upshot of this analysis is that Henneaux and Troessaert’s methods of constructing

the algebra give us the global Lorentz transformations; however, in our prescription, we

have recovered the complete local superrotation algebra.

• In Chapter 4, we have made use of the famous formalism of double copy (DC), which re-

lates a gravity scattering amplitude to gauge theory amplitude. However, we constructed

the relation only in soft and collinear sectors of super Yang-Mills and N = 8 supergravity

theory. The important consideration in our work that helped in successful double copy

relation is the unique self-duality condition. Based on the factorization of the states,

we properly fixed the R-symmetry indices on both the gauge and gravity sides of the

amplitudes.

The goal of this work is twofold: first, we would like to construct the dual celestial CFT

corresponding to the bulk N = 8 supergravity in four dimensions. This requires the

collinear limits of bulk amplitudes as they imply the OPEs of (super)conformal operators

in the CCFT. Second, we would like to determine the asymptotic symmetries of N =

8 supergravity using celestial holography. As discussed in [411], our final goal is to

determine the contribution of BMS hairs to black hole entropy. The first step to such an

analysis would be to understand the extension of the BMS group to super BMS group

in N = 8 supergravity. The corresponding N = 1 supergravity case has already been
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worked out in [7]. Both these goals have been addressed in the work [392].

• In Chapter 5, CCFT techniques have been used to show the extension of the supersymme-

try and non-extension of the R-symmetry algebra at the null infinities in our supergravity

case study of N = 8 theory.

Let us briefly discuss the importance of the study of asymptotic symmetry algebra for

higher N supergravity theories. Firstly, in the context of flat space holography1, they

can be used to find a field theory dual of the bulk theories. Supersymmetry gives us a

more technical handle to address such questions. Secondly, it is conjectured [333, 416,

417] that the BMS hairs are responsible for Black Hole entropy. The conjecture has

also been shown to be only partially correct in [418, 419], where the authors showed

that the BMS hair could only partially incorporate some part of the Black Hole entropy.

In the context of a class of black holes, namely extremal black holes in (super)string

theories, the microscopic counting of black hole states is known in great detail. It would

be interesting to find how much of this entropy is captured by the (super)bms4 hairs. This

project remains one of our prime goals to study in the future.

It is instructive to note that our results are consistent with the usual expectation of sym-

metry enhancement at the boundary for gauge symmetries. In the case of ordinary gravity

and minimal supergravity theories, the corresponding symmetries are local in nature, and

hence, they have a natural infinite extension at the boundary. For extended supergrav-

ity, the R-symmetry is primarily a global symmetry, and in our study, we find that the

symmetry group is not extended at the asymptotic boundary. In the CCFT language, this

result comes from the regularity of the OPEs between the R-symmetry charges and the

supersymmetry, which signifies the absence of collinear divergences. It would be nice

to check the fate of R-symmetry in the context of gauged supergravity theories (where

the R-symmetries are also local) by performing a direct asymptotic symmetry analysis of

those theories. On the other hand, global non-compact symmetries, such as translation,

also have a local counterpart in the theory of dynamical gravity, and hence, it does get an

infinite extension at the asymptotic null boundary.

• In Chapter 6, we showcased some recent advancements in relation to the scattering in

AdS spacetimes. One can object here to the obscurity in defining the scattering pro-

1In the context of 3-dimensional (super)gravity, the duals have been constructed in [337, 411–415].
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cess, considering the closeness of the spacetime manifold. However, our analysis holds

specific to the flat space limit of AdS spacetime. The S−matrices of flat space can be

derived by taking the dimension of the conformal field ∆ in the CFT correlator to be large

when the dual AdS length scale, R → ∞. In the embedding space, the AdS S-matrix is

defined as the Fourier transform of the position space correlator that asserts complete in-

formation of the bulk physics in the conformal correlators in 1/R2 perturbations theory.

We pursued the momentum Space prescription introduced in [236].

This chapter is attributed to our recent ongoing work [409]. The scattering, in our case,

involves massive vector particles, and the results so far include the successful construc-

tion of the bulk-to-boundary propagator and the bulk-to-bulk propagators for the massive

vector fields perturbatively up to the subleading order of 1/R2. This aims to explore In-

frared sectors of ‘Scattering amplitudes’ in AdS spacetime. In addition, we want to relate

it to more classical results or soft theorems in the 1/R perturbation theory. This momen-

tum space analysis helps in the higher spin theories where the consistent formulation of

the scattering is still missing.

Flat space IR behavior of massless particles becomes finite in AdS, which makes the AdS

amplitudes more well-behaved than Minkowski spacetime to construct IR-safe observ-

ables by using AdS length to be the IR regulator. In the end, one can take this radius too

large to get back to the flat space scattering rates and cross-sections. There are subtleties

involved in studying massless particles in AdS and soft particles upon mass going zero

limits. These are two different limits in AdS. The first one has been well explored in the

literature [398, 406]; however, the notion of taking a soft limit is a bit obscure. This can

be understood in the simultaneous double scaling limit, which is the soft limit in AdS.

This was our prior motivation for studying scattering in AdS.

Again, the universal sectors of soft and collinear limits can be explored using the Mellin

representations in the flat limit of AdS [420], unlike the momentum space formalism in

our case. Hence, understanding this in the momentum space formalism could be one of

the future aspects of this work. Another recently explored direction is to construct the

Carrolian CFT Correlation functions from the AdS Witten diagrams, which is completely

motivated by the 4D flat space celestial holography [195]; this could be a better explo-

ration considering the mathematical simplicity of flat space holography and the relation

of CCFT correlation function to Witten diagrams in the flat limit of AdS.
144



Finally, in this thesis, we presented some applications of asymptotic symmetry analysis,

which relies on suitable celestial OPEs in the CCFT, connecting bulk and boundary physics,

thus developing the holographic principle in flat spacetime. The case studies have been in

the case of EYM and maximally supersymmetric N = 8 Supergravity theory. This analysis

strengthens our motivations to study this holography on or near the black hole horizons, con-

tributing to the studies of soft hairs. Additionally, we are hopeful about understanding the flat

space scattering from the perspective of the AdS observer, which will lead us to understand

the universalities of the scattering amplitudes in the non-trivial background spacetimes. In our

upcoming work, we will update the reader on this line of studies.

Feedback Request

Dear Reader,

Your feedback on my thesis would greatly benefit me. If you notice any errors, omissions,

or missing references, I would be grateful if you could inform me.

Please feel free to contact me at tabasum19@iiserb.ac.in or trahnuma03@gmail.com.

Thank you.
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APPENDIX A
SOME REQUIRED INTEGRALS

A.1 Evaluation of Useful Integrals
We show that certain integrals vanish as a result of the global conformal invariance of celestial
correlators. These results are used in the computations presented in the main draft.

A.1.1 Evaluation of Integral I
We have,〈

Ga(z)Gb(w)
N

∏
n=2

O∆n,ℓn (zn, z̄n)

〉
=− 1

2π

M

∑
i=1

∑
c

f abic
∫

d2z1
1

(w− z1)
2

1
z− zi

×
〈
Ob1=b

1,−1 (z1, z̄1) . . .Oc
∆i,ℓi

(zi, z̄i) . . .Obn
∆n,ℓn

(zn, z̄n)
〉
.

Now using the global conformal invariance of
〈
Ob1=b

1,−1 (z1, z̄1) . . .Oc
∆i,ℓi

(zi, z̄i) . . .Obn
∆n,ℓn

(zn, z̄n)
〉

,
we will show that the first integral vanishes and the only nontrivial terms which exist are the
regular ones.

Putting W = w− z1, Z = z− z1 we have,∫
d2z1

1
W 2Z

〈
Ob1=b

1,−1 (z1, z̄1) . . .Oc
∆i,ℓi

(zi, z̄i) . . .Obn
∆n,ℓn

(zn, z̄n)
〉

=−∂w

∫
d2z1

1
WZ

〈
Ob1=b

1,−1 (z1, z̄1) . . .Oc
∆i,ℓi

(zi, z̄i) . . .Obn
∆n,ℓn

(zn, z̄n)
〉
.

We use the following identity:

1
WZ

=
1

z−w

(
1

w− z1
− 1

z− z1

)
=

1
z−w

(
1

W
− 1

Z

)
We get,∫

d2z1
1

WZ

〈
Ob1=b

1,−1 (z1, z̄1) . . .Oc
∆i,ℓi

(zi, z̄i) . . .Obn
∆n,ℓn

(zn, z̄n)
〉

=
1

z−w

∫
d2z1

(
1

W
− 1

Z

) 〈
Ob1=b

1,−1 (z1, z̄1) . . .Oc
∆i,ℓi

(zi, z̄i) . . .Obn
∆n,ℓn

(zn, z̄n)
〉
.

We change z1 → z−w+ z1 in the second term of this integral:∫
d2z1

1
z− z1

〈
Ob1=b

1,−1 (z1, z̄1) . . .Oc
∆i,ℓi

(zi, z̄i) . . .Obn
∆n,ℓn

(zn, z̄n)
〉
−→∫

d2z1
1

w− z1

〈
Ob1=b

1,−1 (z1, z̄1) . . .Oc
∆i,ℓi

(zi, z̄i) . . .Obn
∆n,ℓn

(zn, z̄n)
〉

By global conformal invariance of〈
Ob1=b

1,−1 (z1, z̄1) . . .Oc
∆i,ℓi

(zi, z̄i) . . .Obn
∆n,ℓn

(zn, z̄n)
〉
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under

1 z−w

0 1

 ∈ SL(2,C), we get (cf. [185, Eq. (3.2)]),

〈
Ob1=b

1,−1 (z−w+ z1, z̄− w̄+ z̄1) . . .Oc
∆i,ℓi

(zi, z̄i) . . .Obn
∆n,ℓn

(zn, z̄n)

〉
=

〈
Ob1=b

1,−1 (z1, z̄1) . . .Oc
∆i,ℓi

(zi, z̄i) . . .Obn
∆n,ℓn

(zn, z̄n)

〉
,

which implies ∫
d2z1

1
WZ

〈
Ob1=b

1,−1 (z1, z̄1) . . .Oc
∆i,ℓi

(zi, z̄i) . . .Obn
∆n,ℓn

(zn, z̄n)
〉
= 0

Thus we get∫
d2z1

1
W 2Z

〈
Ob1=b

1,−1 (z1, z̄1) . . .Oc
∆i,ℓi

(zi, z̄i) . . .Obn
∆n,ℓn

(zn, z̄n)
〉
=−∂w(0) = 0

A.1.2 Evaluation of Integral II

We show that

1
2π

∫
d2z1

(
1

z−w
1

WZ
− 1

WZ2

)〈
Oa

1,−1 (z1, z̄1)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
= 0.

It suffices to prove that

1
2π

∫
d2z1

1
WZ

〈
Oa

1,−1 (z1, z̄1)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉
= 0,

since the second term is given by

1
2π

∫
d2z1

1
WZ2

〈
Oa

1,−1 (z1, z̄1)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉

=− 1
2π

∂z

[∫
d2z1

1
WZ

〈
Oa

1,−1 (z1, z̄1)
M

∏
n=2

Obn
∆n,ℓn

(zn, z̄n)

〉]
= 0

Using the global conformal invariance of the correlator as in A.1.1, the proof is complete.

A.2 Conformal Dimension of Gab(z, z̄)

In this appendix, we explicitly compute the OPE of Gab(z, z̄) with T (z) and T (z̄) and conclude
that the conformal dimension of Gab(z, z̄) is (h, h̄) = (1,1). This justifies the mode expansion
of Gab(z, z̄) in Eq. (5.88). We have〈

T (z)Gab(w, w̄)
〉
=
〈

T (z) : Ga(w)Gb
(w̄) :

〉
−
〈

T (z) : Gb
(w̄)Ga(w) :

〉
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which is the difference of two three point correlation functions. We can use generalised Wick’s
theorem (see [58, Appendix 6.B]) to simplify this. Since the normal ordering ‘: :’ removes the
singular terms from the OPE, we can use the expression [58, Appendix B, Eq. (6.206)]. Then
we have〈

T (z) : Ga(w)Gb
(w̄) :

〉
=

1
2πi

∮ dx
x−w

[
T (z) : Ga(x)Gb

(w̄) : + : Ga(x)T (z) Gb
( w̄) :

]

=
1

2πi

∮ dx
x−w

[
1

(z− x)2 : Ga(x)Gb
(w̄) : +

1
z− x

: ∂xGa(x)Gb
(w̄) : + regular.

]
=

1
(z−w)2 : Ga(w)Gb

(w̄) : +
1

z−w
: ∂wGa(w)Gb

(w̄) :,

where we used the OPE of Eq. (3.28) and Eq. (3.31). Similarly〈
T (z) : Gb

(w̄)Ga(w) :
〉

=
1

2πi

∮ dx
x−w

[
T (z) : Gb

( w̄)Ga(x) : + : Gb
(w̄)T (z) Ga(x) :

]

=
1

2πi

∮ dx
x−w

[
regular. +

1
(z− x)2 : Gb

(w̄)Ga(x) : +
1

z− x
: Gb

(w̄)∂xGa(x) :
]

=
1

(z−w)2 : Gb
(w̄)Ga(w) : +

1
z−w

: Gb
(w̄)∂wGa(w) :,

where we again used the OPE of Eq. (3.28). Thus we get〈
T (z)Gab(w, w̄)

〉
=

1
(z−w)2 :

[
Ga(w),Gb

(w̄)
]

: +
1

z−w
∂w :

[
Ga(w),Gb

(w̄)
]

:

=
1

(z−w)2G
ab(w, w̄)+

1
z−w

∂wGab(w, w̄).

Similarly we can compute the OPE of Gab(z, z̄) with T (z̄). We get〈
T (z̄)Gab(w, w̄)

〉
=

1
(z̄− w̄)2G

ab(w, w̄)+
1

z̄− w̄
∂w̄Gab(w, w̄).
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APPENDIX B
ALL COLLINEAR SPLIT FACTORS

B.1 Split Factors
Here, we list all of the split factors corresponding to both like and unlike spins in our super-
gravity theory.
Gravi-photons splits:

SplitSG
0
(
z,11+0,21+0)=− [12]

⟨12⟩
, SplitSG

0
(
z,11+0,20+1)=− [12]

⟨12⟩

SplitSG
0

(
z,1

1
2+

1
2 ,2

1
2+

1
2

)
=− [12]

⟨12⟩
, SplitSG

+2
(
z,11+0,2−1+0)=−(1− z)2 [12]

⟨12⟩

SplitSG
−2
(
z,11+0,2−1+0)=−z2 ⟨12⟩

[12]
, SplitSG

−2

(
z,1−

1
2−

1
2 ,2

1
2+

1
2

)
=−(1− z)2 ⟨12⟩

[12]

SplitSG
+2

(
z,1−

1
2−

1
2 ,2

1
2+

1
2

)
=−z2 [12]

⟨12⟩

(B.1)

Gravi-photinos splits:

SplitSG
1

(
z,1

1
2+0,2

1
2+0
)
=−

√
z(1− z)

[12]
⟨12⟩

, SplitSG
1

(
z,1

1
2+0,20+ 1

2

)
=−

√
z(1− z)

[12]
⟨12⟩

SplitSG
+2

(
z,1

1
2+0,2−

1
2+0
)
=−

√
z(1− z)3 [12]

⟨12⟩
, SplitSG

−2

(
z,1

1
2+0,2−

1
2+0
)
=−

√
z3(1− z)

⟨12⟩
[12]

SplitSG
1

(
z,11− 1

2 ,2−
1
2+1
)
=−

√
z(1− z)

[12]
⟨12⟩

, SplitSG
−2

(
z,1

1
2−1,2−

1
2+1
)
=−

√
z(1− z)3 ⟨12⟩

[12]

SplitSG
+2

(
z,1

1
2−1,2−

1
2+1
)
=−

√
z3(1− z)

[12]
⟨12⟩

.

(B.2)

Scalars Splits:

SplitSG
−2
(
z,10+0,20+0)− z(1− z)

⟨12⟩
[12]

, SplitSG
+2
(
z,10+0,20+0)=−z(1− z)

[12]
⟨12⟩

SplitSG
−2
(
z,1−1+1,2+1−1)=−z(1− z)

⟨12⟩
[12]

, SplitSG
+2
(
z,1−1+1,2+1−1)=−z(1− z)

[12]
⟨12⟩

SplitSG
−2

(
z,1−

1
2+

1
2 ,2+

1
2−

1
2

)
=−z(1− z)

⟨12⟩
[12]

, SplitSG
+2

(
z,1−

1
2+

1
2 ,2+

1
2−

1
2

)
=−z(1− z)

[12]
⟨12⟩

.

(B.3)

Graviton-Gravitino Splits:

SplitSG
− 3

2

(
z,11+1,21+ 1

2

)
=− 1

z
√

1− z
[12]
⟨12⟩

, SplitSG
− 3

2

(
z,11+1,2

1
2+1
)
=− 1

z
√
(1− z)

[12]
⟨12⟩

SplitSG
+ 3

2

(
z,11+1,2−1− 1

2

)
=−

√
(1− z)5

z
[12]
⟨12⟩

, SplitSG
+ 3

2

(
z,11+1,2−

1
2−1
)
=−

√
(1− z)5

z
[12]
⟨12⟩

(B.4)
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Appendix B. All Collinear Split Factors

All other Splits can be written via the helicity flipping relation in Eq. (4.25).

Graviton-Graviphoton splits:

SplitSG
−1
(
z,11+1,21+0)=−1

z
[12]
⟨12⟩

, SplitSG
−1
(
z,11+1,20+1)=−1

z
[12]
⟨12⟩

SplitSG
+1
(
z,11+1,20−1)=−(1− z)2

z
[12]
⟨12⟩

, SplitSG
+1
(
z,11+1,2−1+0)=−(1− z)2

z
[12]
⟨12⟩

SplitSG
−1

(
z,11+1,2

1
2+

1
2

)
=−1

z
[12]
⟨12⟩

, SplitSG
+1

(
z,11+1,2−

1
2−

1
2

)
=−(1− z)2

z
[12]
⟨12⟩

(B.5)

Rest are summarised in Eq. (4.25).

Graviton-Graviphotino splits:

SplitSG
− 1

2

(
z,11+1,2

1
2+0
)
=−

√
(1− z)

z
[12]
⟨12⟩

, SplitSG
1
2

(
z,11+1,2−

1
2+0
)
=−

√
(1− z)3

z
[12]
⟨12⟩

SplitSG
− 1

2

(
z,11+1,20+ 1

2

)
=−

√
(1− z)

z
[12]
⟨12⟩

, SplitSG
1
2

(
z,11+1,20− 1

2

)
=−

√
(1− z)3

z
[12]
⟨12⟩

SplitSG
− 1

2

(
z,11+1,21− 1

2

)
=−

√
(1− z)

z
[12]
⟨12⟩

, SplitSG
1
2

(
z,11+1,2−1+ 1

2

)
=−

√
(1− z)3

z
[12]
⟨12⟩

SplitSG
− 1

2

(
z,11+1,2−

1
2+1
)
=−

√
(1− z)

z
[12]
⟨12⟩

, SplitSG
1
2

(
z,11+1,2

1
2−1
)
=−

√
(1− z)3

z
[12]
⟨12⟩
(B.6)

Graviton-Scalar Splits:

SplitSG
0
(
z,11+1,20+0)=−(1− z)

z
[12]
⟨12⟩

SplitSG
0
(
z,11+1,21−1)=−(1− z)

z
[12]
⟨12⟩

SplitSG
0

(
z,11+1,2

1
2−

1
2

)
=−(1− z)

z
[12]
⟨12⟩

(B.7)

Gravitino-Graviphoton Splits:

SplitSG
− 1

2

(
z,1

1
2+1,20+1

)
=− 1√

z
[12]
⟨12⟩

, SplitSG
− 1

2

(
z,1

1
2+1,21+0

)
=− 1√

z
[12]
⟨12⟩

SplitSG
− 1

2

(
z,1

1
2+1,2

1
2+

1
2

)
=− 1√

z
[12]
⟨12⟩

, SplitSG
− 1

2

(
z,11+ 1

2 ,20+1
)
=− 1√

z
[12]
⟨12⟩

SplitSG
− 1

2

(
z,11+ 1

2 ,21+0
)
=− 1√

z
[12]
⟨12⟩

, SplitSG
− 1

2

(
z,11+ 1

2 ,2
1
2+

1
2

)
=− 1√

z
[12]
⟨12⟩

SplitSG
+ 3

2

(
z,1

1
2+1,20−1

)
=−(1− z)2

√
z

[12]
⟨12⟩

, SplitSG
+ 3

2

(
z,11+ 1

2 ,2−1+0
)
=−(1− z)2

√
z

[12]
⟨12⟩

(B.8)

184



B.1. Split Factors

Gravitino-Graviphotino Splits:

SplitSG
0

(
z,1

1
2+1,20+ 1

2

)
=−

√
(1− z)

z
[12]
⟨12⟩

, SplitSG
0

(
z,1

1
2+1,2

1
2+0
)
=−

√
(1− z)

z
[12]
⟨12⟩

SplitSG
0

(
z,1

1
2+1,21− 1

2

)
=−

√
(1− z)

z
[12]
⟨12⟩

, SplitSG
0

(
z,1

1
2+1,2−

1
2+1
)
=−

√
(1− z)

z
[12]
⟨12⟩

SplitSG
+1

(
z,1

1
2+1,20− 1

2

)
=−

√
(1− z)3

z
[12]
⟨12⟩

, SplitSG
+1

(
z,1

1
2+1,2−

1
2+0
)
=−

√
(1− z)3

z
[12]
⟨12⟩

SplitSG
+1

(
z,1

1
2+1,2

1
2−1
)
=−

√
(1− z)3

z
[12]
⟨12⟩

, SplitSG
0

(
z,11+ 1

2 ,20+ 1
2

)
=−

√
(1− z)

z
[12]
⟨12⟩

SplitSG
0

(
z,11+ 1

2 ,2
1
2+0
)
=−

√
(1− z)

z
[12]
⟨12⟩

, SplitSG
0

(
z,11+ 1

2 ,21− 1
2

)
=−

√
(1− z)

z
[12]
⟨12⟩

SplitSG
0

(
z,11+ 1

2 ,2−
1
2+1
)
=−

√
(1− z)

z
[12]
⟨12⟩

, SplitSG
+1

(
z,11+ 1

2 ,20− 1
2

)
=−

√
(1− z)3

z
[12]
⟨12⟩

SplitSG
+1

(
z,11+ 1

2 ,2−
1
2+0
)
=−

√
(1− z)3

z
[12]
⟨12⟩

, SplitSG
+1

(
z,11+ 1

2 ,2−1+ 1
2

)
=−

√
(1− z)3

z
[12]
⟨12⟩

(B.9)

Gravitino-Scalar Splits:

SplitSG
1
2

(
z,1

1
2+1,20+0

)
=−(1− z)√

z
[12]
⟨12⟩

, SplitSG
1
2

(
z,1

1
2+1,21−1

)
=−(1− z)√

z
[12]
⟨12⟩

SplitSG
1
2

(
z,1

1
2+1,2

1
2−

1
2

)
=−(1− z)√

z
[12]
⟨12⟩

, SplitSG
1
2

(
z,11+ 1

2 ,20+0
)
=−(1− z)√

z
[12]
⟨12⟩

(B.10)

185



Appendix B. All Collinear Split Factors

Similarly for other factorisations of Gravitino we have the same split factors.
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Graviphotino-Scalar Splits:
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B.2 Explicit computations of Amplitudes

In this appendix, we explicitly calculate the collinear limits of states various spin combinations.

B.2.1 Like spins

The collinear limits of gravitons is calculated in Section B.2.1 in detail. So we start with
collinear limit of gravitinos.
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The factorisation of R-symmetry indices has the form{(

a; 3
2

)
=
(
a; 1

2

)
⊗1(

r; 3
2

)
= 1⊗

(
r; 1

2

)
.

We then have

Mn

(
1a;+ 3

2 ,2b;+ 3
2 , · · · ,n

)
= Mn

(
1(a; 1

2)⊗1,2(b; 1
2)⊗1, · · · ,n

)
= SplitSG

−1

(
z,1

1
2+1,2

1
2+1
)
×Mn−1

(
pab;+1, · · · ,n

)
=

ωp√
ω1ω2

z̄12

z12
Mn−1

(
pab;+1, · · · ,n

) (B.14)

Mn

(
1a;+ 3

2 ,2r;+ 3
2 , · · · ,n

)
= Mn

(
1(a; 1

2)⊗1,21⊗(r; 1
2), · · · ,n

)
= SplitSG

−1

(
z,1

1
2+1,21+ 1

2

)
×Mn−1

(
par;+1, · · · ,n

)
=

ωp√
ω1ω2

z̄12

z12
Mn−1

(
par;+1, · · · ,n

) (B.15)

The collinear limits remains the same under (a,b)→ (r,s). All these can be combined and we
can write
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For opposite helicities, we have
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The collinear limit remains the same under (a,b) → (r,s). Infact since there are no other
nontrivial split factors for other factorisations, the above collinear limit is true for any 1 ≤
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A,B ≤ 8:
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Graviphotons
The factorizations of R-symmetry indices are as follows,
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Similarly
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Similarly
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These can be combined to write the collinear limit uniformly as
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where 1 ≤ A,B ≤ 8. For opposite helicities we have,
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Note that the negative sign in the first comes from the negative sign in the factorisation of
negative helicity graviphotons.
Similarly,
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where the generalised Kronecker delta δ
a1...an
b1...bn

is defined as
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and we used the self-duality condition Eq.(4.21). This collinear limit remains the same under
(a,b,c,d) → (r,s, t,u) with α4 replaced by α̃4. Thus if we pick α4 = α̃4 = −1, then using
the fact that δ a

r = 0, we can write the collinear limit of two opposite helicity gauge bosons
collectively as
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(B.26)

Our choice of the parameters α4 and α̃4 is purely motivated by our desire to combine the
collinear limits for different factorisations of the gauge bosons in supergravity. Other choices
of the parameters will introduce some extra negative signs in some of the collinear limits.

Graviphotinos
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The factorisation R-symmetry indices is given by{(
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Using this factoriation and the split factors in Appendix B.1 the collinear limits of various
combination of R-symmetry indices is calculated below. We have
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Here the εrstu factor appears because of the collinear split factor between two scalars in N = 4
SYM.
Similarly for other non-trivial factorisation we have,
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Scalars
The three possible channels are 0 = 0 ⊗ 0, 0 = ±1 ⊗∓1 and 0 = ±1

2 ⊗∓1
2 . We have the
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non-trivial splits are given in Appendix B.3. The factorization of R-symmetry indices are,
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Similarly,
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B.2.2 For Unlike Spins

We now use the splits for mixed helicities listed in Appendix B.1 and the factorisation of R-
symmetry indices mentioned in the calculation of collinear limit for like spins.

Graviton-Gravitino
We have
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Similarly we have
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Other helicity combination of graviton and gravitino can be obtained by flipping the indices
along with z12 ↔ z̄12.

Graviton-Graviphoton
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Similarly we can calculate the collinear helicity combinations of Graviphotons with negative
helicity Gravitons.
Hence
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Graviton-Graviphotino
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Here we are using change of basis as a redefinition for the fields in SYM:
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Similarly
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Graviton-Scalar
Since the split factors corresponding to all factorisations of the R-symmetry indices is the same,
the collinear limit can be uniformly written as
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In conclusion, we can write
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Gravitino-Graviphotino
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Similarly for all other factorisations the split factors will remain the same for two same helicity
Gravitino and Graviphotino pair,
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Collecting all of them, we can write
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where we used the fact that δ a
r = 0 to write
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Similarly we have
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Note that the second εae f g comes from the fact that we are lowering the index of he scalar in
N = 4 SYM in the factorisation of the negative helicity gluon. The factorisation looks as
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where G f g is the gluon in N = 8 supergravity and G is the gluon in N = 4 SYM.
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Thus we have the collinear limit
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Similarly we get the same splitting factors for all other factorisation channels.

Gravitino-Scalar
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where we lowered the index on gluino in the SYM theory.
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Hence we can write the above in simplified form as
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Similarly we can have the relations for opposite helicity collinear pair.

Graviphoton-Graviphotino
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This is true for all other factorisation channels of both positive helicity Graviphoton and Graviphotino
collinear pair. Similarly we can have the amplitude for negative helicity collinear pairs.
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All other factorisation channels also correspond to the same collinear divergence factor and we
get the other amplitudes in the usual way by flipping the helicity and z12 ↔ z̄12.

Graviphoton-Scalar
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Similarly we can write for other remaining factorisation channels.
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Note that the above expression contains 16 terms but only four terms are nonzero since δ a
r = 0.
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APPENDIX C

OPES OF COMPONENT FIELDS IN SUGRA

C.1 OPEs of like and unlike spins

Using (5.7), we can extract the rest of the OPEs from the collinear singularities of the ampli-
tudes calculated in [392]. In the following, the zero, one, two, three, and four index operators
are, respectively, graviton, gravitino, graviphoton, gravitino, and scalar operators.

C.1.1 Same spin OPEs
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In the following, the notation is a,b,c, · · · ∈ {1,2,3,4} and r,s, t, · · · ∈ {5,6,7,8}. See [392] for
details.
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C.1.2 Different spins
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C.2. Soft graviton and soft gravitino operators

Oabr
∆1,+

1
2
(z1, z̄1)Ocdst

∆2,0 (z2,z̄2)∼ ε
rstu

ε
abcd z̄12

z12
B
(

∆1 +
1
2
,∆2 +1

)
Ou; ∆1+∆2,− 3

2
(z2, z̄2)

Oabr
∆1,+

1
2
(z1, z̄1)Ocstu

∆2,0 (z2,z̄2)∼−ε
rstu

ε
abcd z̄12

z12
B
(

∆1 +
1
2
,∆2 +1

)
Od; ∆1+∆2,− 3

2
(z2, z̄2)

(C.14)

Similarly, all other OPEs can be extracted from the amplitudes given in [392].

C.2 Soft graviton and soft gravitino operators

We will use the soft limit of superamplitude and then perform an expansion in the Grassmann
odd coordinate of the superspace to obtain the soft graviton and gravitino limits in an amplitude.

The leading and sub-leading soft factors in a superamplitude corresponding to ω−1
p and ω0

p
were calculated in [392] using double copy relations. Here we only present relevant results
and refer the readers to [392] for further details. In the celestial basis, the leading soft factor is
given by

MN(· · · , j−1, j, j+1, · · ·)
ω j→0
−−−→ 1

ω j

N

∑
i=1
i̸= j

ωi z ji z̄ ji

[
z2

j−1,i

z2
j−1, j z2

j,i
+

z̄2
j−1,i

z̄2
j−1 z̄2

j,i
δ

4 (
η

j)]

×MN−1(· · · , j−1, j+1, · · ·)

(C.15)

One can now get the soft limit in terms of celestial superamplitude in a straightforward way.
We have〈

N

∏
n=1

lim
∆ j→1

(∆ j −1)O∆n (zn, z̄n,η
n)

〉
=

 N

∏
n=1
n̸= j

∫
dωn ω

∆n−1
n

 lim
∆ j→1

∫
∞

0
dω j(∆ j −1)ω∆ j−1

j

×δ
(4)

 N

∑
k=1
k ̸= j

ωkqk

MN (1, . . . ,n, . . . ,N)

=

 N

∏
n=1
n ̸= j

∫
dωn ω

∆n−1
n

∫ ∞

0
dω j

d
dω j

(
lim

∆ j→1
ω

∆ j−1
j

)
δ
(4)

 N

∑
k=1
k ̸= j

ωkqk

ω jMN (1, . . . ,n, . . . ,N)

(C.16)
Using the fact that

d
dω j

(
lim

∆ j→1
ω

∆ j−1
j

)
=

d
dω j

θ(ω j) = δ (ω j) (C.17)

where θ(ω) is the Heaviside step function, we see that the integral on ω j on the right-hand side
gives us

〈
N

∏
n=1

lim
∆ j→1

(∆ j −1)O∆n (zn, z̄n,η
n)

〉
=

 N

∏
n=1
n̸= j

∫
dωn ω

∆n−1
n

δ
(4)

 N

∑
k=1
k ̸= j

ωkqk


× lim

ω j→0
ω jMN (1, . . . ,n, . . . ,N)

(C.18)
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Using the soft limit (C.15) we get〈
N

∏
n=1

lim
∆ j→1

(∆ j −1)O∆n (zn, z̄n,η
n)

〉
=

N

∑
i=1
i ̸= j

ωi

{
z2

j−1,iz̄ ji

z2
j−1, jz ji

+
z̄2

j−1,iz ji

z̄2
j−1, j z̄ ji

δ
4 (

η
j)}

×

 N

∏
n=1
n̸= j

∫
∞

0
dωkω

∆k−1
k

δ
(4)

 N

∑
k=1
k ̸= j

ωkqk

MN−1 (1, . . . , i, . . . ,N)

=
n

∑
i=1
i ̸= j

{
z2

j−1,iz̄ ji

z2
j−1, jz ji

+
z̄2

j−1,iz ji

z̄2
j−1, j z̄ ji

δ
8 (

η
j)}[ N

∏
n=1
n̸=i

∫
∞

0
dωk ω

∆k−1
k

∫
∞

0
dωi ω

∆i
i

δ
(4)

 N

∑
k=1
k ̸= j

ωkqk

MN−1 (1, . . . , i, . . . ,N)

]

=
n

∑
i=1
i ̸= j

{
z2

j−1,iz̄ ji

z2
j−1, jz ji

+
z̄2

j−1,iz ji

z̄2
j−1, j z̄ ji

δ
8 (

η
j)}〈O∆1 (z1, z̄1,η1) , · · ·O∆i+1

(
zi, z̄i,η

i) , · · ·〉
The Super-Ward identity that we get from the conformally supersoft theorem is〈

J1(z, z̄,η)O∆1(z1, z̄1,η
1) · · ·O∆N

(
zN , z̄N ,η

N)〉
=

N

∑
i=1

{
(z̄− z̄i)

(z− zi)

(zN − zi)
2

(zN − z)2 +
(z− zi)

(z̄− zi)

(z̄N − z̄i)
2

(z̄N − z̄)2 δ
8(η)

}
×
〈
O∆1

(
z1, z̄1,η

1) , · · ·O∆i+1
(
zi, z̄i,η

i) , · · · ,O∆N

(
zN , z̄N ,η

N)〉
(C.19)

where
J1(z, z̄,η) = lim

∆→1
(∆−1)O∆(z, z̄,η)

is the ∆ → 1 soft operator. In the above soft factor, we chose the reference vector for polar-
ization of the soft particle to be the momentum vector of nth particle. We leave this reference
vector arbitrary which corresponds to a point ξ ∈ CS2. The super-Ward identity then takes the
form〈

J1(z, z̄,η)O∆1(z1, z̄1,η
1) · · ·O∆N

(
zN , z̄N ,η

N)〉
=

N

∑
i=1

{
(z̄− z̄i)

(z− zi)

(ξ − zi)
2

(ξ − z)2 +
(z− zi)

(z̄− z̄i)

(
ξ̄ − z̄i

)2(
ξ̄ − z̄

)2 δ
8(η)

}
×
〈
O∆1

(
z1, z̄1,η

1) , · · ·O∆i+1
(
zi, z̄i,η

i) , · · · ,O∆N

(
zN , z̄N ,η

N)〉
(C.20)

When we expand both sides in the Grassmann variables η i and compare coefficients, we get
the Ward identity for the soft graviton operator:〈

J1(z, z̄)
N

∏
n=1

O∆n,ℓn (zn, z̄n)

〉
=

N

∑
i=1

(z̄− z̄i)

(z− zi)

(ξ − zi)
2

(ξ − z)2 ⟨O∆1,ℓ1 (z1, z̄1) ,

· · ·O∆i+1,ℓi (zi, z̄i) , · · · ,O∆N ,ℓN (zN , z̄N)⟩
(C.21)
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and〈
J̄1(z, z̄)

N

∏
n=1

O∆n,ℓn (zn, z̄n)

〉
=

N

∑
i=1

(z− zi)

(z̄− z̄i)

(
ξ̄ − z̄i

)2(
ξ̄ − z̄

)2 ⟨O∆1,ℓ1 (z1, z̄1) ,

· · ·O∆i+1,ℓi (zi, z̄i) , · · · ,O∆N ,ℓN (zN , z̄N)⟩

(C.22)

where
J1(z, z̄) = lim

∆→1
(∆−1)O∆,+2(z, z̄), J̄1(z, z̄) = lim

∆→1
(∆−1)O∆,−2(z, z̄) (C.23)

are the ∆ = 1 soft graviton operators. The subleading soft factor was also calculated in [392].
It turns out that it is the same as the subleading soft factor for positive and negative helicity
graviton in pure gravity [113, Eq. (2.9)]. We then write the super Ward identity following the
calculations in [354]:〈

J0(z, z̄,η)O∆1(z, z̄,η
1) · · ·O∆N

(
zN , z̄N ,η

N)〉
=

N

∑
i=1

{
(z̄− z̄i)

(z− zi)

(ξ − zi)

(ξ − z)
((z̄− z̄i)∂z̄i −2h̄i)+

(z− zi)

(z̄− z̄i)

(
ξ̄ − z̄i

)(
ξ̄ − z̄

) δ
8(η)((z− zi)∂zi −2hi)

}
×
〈
O∆1

(
z1, z̄1,η

1) , · · ·O∆i

(
zi, z̄i,η

i) · · · ,O∆N

(
zN , z̄N ,η

N)〉
(C.24)

where
J0(z, z̄,η) = lim

∆→0
∆[O∆,+2(z, z̄)+δ

8(η)O∆,−2(z, z̄)].

only contains the ∆ = 0 soft graviton operators. This immediately gives us the subleading soft
graviton limit:〈

J0(z, z̄)
N

∏
n=1

O∆n,ℓn (zn, z̄n)

〉
=

N

∑
i=1

(z̄− z̄i)

(z− zi)

(ξ − zi)

(ξ − z)
((z̄− z̄i)∂z̄i −2h̄i)

×
〈
· · ·O∆i,ℓi (zi, z̄i) · · ·

〉 (C.25)

and 〈
J̄0(z, z̄)

N

∏
n=1

O∆n,ℓn (zn, z̄n)

〉
=

N

∑
i=1

(z− zi)

(z̄− z̄i)

(
ξ̄ − z̄i

)(
ξ̄ − z̄

) ((z− zi)∂zi −2hi)

×
〈
· · ·O∆i,ℓi (zi, z̄i) · · ·

〉 (C.26)

where
J0(z, z̄) = lim

∆→0
∆O∆,+2(z, z̄), J̄0(z, z̄) = lim

∆→0
∆O∆,−2(z, z̄) (C.27)

are the ∆ = 0 soft graviton operators and hi =
∆i+ℓi

2 , h̄i =
∆i−ℓi

2 are the conformal weights of the
operator O∆i,ℓi(z, z̄).

Next, we move on to the soft gravitino operator. The leading soft gravitino limit for super-
amplitudes is given by

MN+1(ψ
A
s+,{p1,η

1}, . . .{pN ,η
N}) =

N

∑
i=1

[si]⟨ri⟩
⟨si⟩⟨rs⟩

∂

∂ηiA
MN({p1,η

1}, . . .{pN ,η
N}), (C.28)
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where r is the reference vector corresponding to point ξ ∈ CS2. The negative helicity soft
gravitino limit can be obtained by conjugating the soft factor. We can expand both sides in η i

and get the soft theorem in terms of component fields. Note that because of ∂/∂ηiA , the soft
gravitino operator changes the spin of the particle ℓi → ℓc

i ≡ ℓi − 1
2 . Thus we can only have

ℓi ∈ {−3/2,−1,−1/2,0,+1/2,+1,+3/2,+2}. (C.29)

For negative helicity gravitino ℓc
i → ℓi and clearly

ℓc
i ∈ {−2,−3/2,−1,−1/2,0,+1/2,+1,+3/2}. (C.30)

The explicit soft theorem in terms of celestial amplitudes is given by〈
JA

1/2(z, z̄)
N

∏
n=1

O∗n
∆n,ℓn

(zn, z̄n)

〉
=

N

∑
i=1

f (A, ℓi,∗i,∗′i)(−1)σi
(z̄− z̄i)

(z− zi)

(ξ − zi)

(ξ − z)

⟨· · ·O∗′i
∆i+

1
2 ,ℓ

c
i
(zi, z̄i) , · · · ⟩

(C.31)

and 〈
J̄1/2 A(z, z̄)

N

∏
n=1

O∗n
∆n,ℓc

n
(zn, z̄n)

〉
=

N

∑
i=1

f̄ (A, ℓc
i ,∗i,∗′i)(−1)σi

(z− zi)

(z̄− z̄i)

(
ξ̄ − z̄i

)(
ξ̄ − z̄

)
⟨· · ·O∗′i

∆i+
1
2 ,ℓi

(zi, z̄i) , · · · ⟩
(C.32)

where

JA
1/2(z, z̄) = lim

∆→ 1
2

(
∆− 1

2

)
OA

∆,+ 3
2
(z, z̄), J̄1/2 A(z, z̄) = lim

∆→ 1
2

(
∆− 1

2

)
O

∆,− 3
2 ,A

(z, z̄) (C.33)

are the soft gravitino operators.

C.3 OPE of the composite current GCD
AB (z, z̄)

We begin by calculating the OPEs GG. We have1〈
GAB(z, z̄)G

CD
(w, w̄)

N

∏
n=3

O∗n
∆n,ℓn

(zn, z̄n)

〉
= lim

∆1→0
∆2→0

∆1∆2

π2

∫
d2z1

1
(z− z1)

a
1

(z̄− z̄1)
b

1

(w̄− z̄2)
a′

1

(w− z2)
b′

×

〈
OAB ∆1,−1(z1, z̄1)OCD

∆2,+1(z2, z̄2)
N

∏
n=3

O∗n
∆n,ℓn

(zn, z̄n)

〉 (C.34)

1Since there is also overlap as there in case of soft gravitino currents in section 5.3.1 we do not separate the
operators in the correlator according to their spins ℓ,ℓ

′
and keep the spins to be arbitrary here as well.
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By taking the soft limit of the first operator ∆1 → 0,〈
GAB(z)G

CD
(w̄)

N

∏
n=3

O∗n
∆n,ℓn

(zn, z̄n)

〉
= lim

∆2→0

∆2

π2

∫
d2z1

∫
d2z2

1
(z− z1)

a
1

(z̄− z̄1)
b

1

(w̄− z̄2)
a′

1

(w− z2)
b′

×

[
−δ

CD
AB

z1 − z2

z̄1 − z̄2

〈
O∆2,+2(z2, z̄2)

N

∏
n=3

O∗n
∆n,ℓn

(zn, z̄n)

〉

+
N

∑
j=3

f (A,B, ℓ j,∗ j,∗′j)
z1 − z j

z̄1 − z̄ j

〈
OCD

∆2,+1(z2, z̄2) · · ·O
∗′j
∆ j,ℓ j+1(z j, z̄ j) · · ·O∗N

∆N ,ℓN
(zN , z̄N)

〉]
(C.35)

Now doing the first integral using (5.61), we get〈
GAB(z)G

CD
(w̄)

N

∏
n=3

O∗n
∆n,ℓn

(zn, z̄n)

〉
= lim

∆2→0

∆2

π

∫
d2z2

1

(w̄− z̄2)
a′

1

(w− z2)
b′

×

[
−δ

CD
AB C1(b,a)

1

(z2 − z)a−2 (z̄2 − z̄)b

〈
O∆2,+2(z2, z̄2)

N

∏
n=3

O∗n
∆n,ℓn

(zn, z̄n)

〉

+
N

∑
j=3

f (A,B, ℓ j,∗ j,∗′j)C1(b,a)
1(

z j − z
)a−2

1(
z̄ j − z̄

)b

×
〈
OCD

∆2,+1(z2, z̄2) · · ·O
∗′j
∆ j,ℓ j+1(z j, z̄ j) · · ·O∗N

∆N ,ℓN
(zN , z̄N)

〉]
(C.36)

We now use the collinear limits of the graviton operator with other fields in the first term and
take the conformally soft limit ∆2 → 0 in the second term.
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The first term becomes

lim
∆2→0

∆2

π

∫
d2z2

1

(w̄− z̄2)
a′

1

(w− z2)
b′

[
−δ

CD
AB C1(b,a)

1

(z2 − z)a−2 (z̄2 − z̄)b

×

〈
O∆2,+2(z2, z̄2)

N

∏
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O∗n
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〉]
=−δ

CD
AB C1(b,a) lim

∆2→0

∆2

π

∫
d2z2

1

(w̄− z̄2)
a′

1

(w− z2)
b′

1

(z2 − z)a−2 (z̄2 − z̄)b

×
N

∑
i=3

B(∆2 −1, f (∆i))
z̄2 − z̄i

z2 − zi

〈
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∆3,ℓ3
(z3, z̄3) · · ·O∗i
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∆N ,ℓN
(zN , z̄N)

〉
=−δ

CD
AB C1(b,a)

1
π

∫
d2z2

1

(w̄− z̄2)
a′

1

(w− z2)
b′

1

(z2 − z)a−2 (z̄2 − z̄)b

×
N

∑
i=3

(1− f (∆i))
z̄2 − z̄i

z2 − zi
×
〈
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∆N ,ℓN
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〉

(C.37)

where we used

lim
∆2→0

∆2 B(∆2 −1, f (∆i)) = 1− f (∆i)
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In the second term in (C.36) now we can take ∆2 → 0 limit,

lim
∆2→0

∆2

π

N

∑
j=3

f (A,B, ℓ j,∗ j,∗′j)
1(

z j − z
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∫
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1
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1
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b′

×
〈
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〉
=

1
π

N
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z j − z
)a−2

1(
z̄ j − z̄
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1
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〈
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∆N ,ℓN
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〉
+

1
π
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∑
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)a−2

1(
z̄ j − z̄

)b
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1
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〈
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=

N

∑
j=3
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+
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∑
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1(
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1
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〉
(C.38)
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Combining the two integrals we get〈
GAB(z, z̄)G

CD
(w, w̄)
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O∗n
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〉
=−δ

CD
AB C1(b,a)

1
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1
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b′

1
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×
N

∑
i=3

(1− f (∆i))
z̄2 − z̄i

z2 − zi
×
〈
O∗3

∆3,ℓ3
(z3, z̄3) · · ·O∗i

∆i,ℓi
(zi, z̄i) · · ·O∗N

∆N ,ℓN
(zN , z̄N)

〉
+

N

∑
j=3

f (A,B, ℓ j,∗ j,∗′j) f̄ (C,D, ℓ j +1,∗′j,∗′′j )C1(b′,a′)
1(

z j − z
)a−2

1(
z̄ j − z̄

)b

× 1(
z j −w

)b′
1(

z̄ j − w̄
)a′−2

〈
O∗3

∆3,ℓ3
(z3, z̄3) · · ·O

∗′′j
∆ j,ℓ j

(z j, z̄ j) · · ·O∗N
∆N ,ℓN

(zN , z̄N)

〉

+
N

∑
i, j=3
i̸= j

f (A,B, ℓ j,∗ j,∗′j) f̄ (C,D, ℓi,∗i,∗′i)C1(b,a)C1(b′,a′)
1(

z j − z
)a−2

1(
z̄ j − z̄

)b

× 1

(zi −w)b′
1

(z̄i − w̄)a′−2

〈
· · ·O

∗′j
∆ j,ℓ j+1(z j, z̄ j) · · ·O

∗′i
∆i,ℓi−1(zi, z̄i) · · ·O∗N

∆N ,ℓN
(zN , z̄N)

〉

(C.39)

Here when we take the normal order of this composite current we only need to care about
the non-singular terms in the above OPE. The non-singular term in the integral above can be
obtained by taking z → w limit in the integral. The integral can then be evaluated as∫

d2z2
1

(w̄− z̄2)
a′

1

(w− z2)
b′

1

(z2 − z)a−2
1

(z̄2 − z̄)b
z̄2 − z̄i

z2 − zi

z=w−→

= (−1)a+b−2
∫

d2z2
1

(z̄− z̄2)
a′+b

1

(z− z2)
b′+a−2

z̄2 − z̄i

z2 − zi

= (−1)a+bC1
(
a+b′−2,a′+b

) 1

(zi − z)a′+b−2
1

(z̄i − z̄)a+b′−2
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Hence〈
: GAB(z, z̄)G

CD
(z, z̄) :

N

∏
n=3

O∗n
∆n,ℓn

(zn, z̄n)

〉

=
(−1)a+b+1

π
δ

CD
AB C1(b,a)C

(
a+b′−2,a′+b

) N

∑
i=3

(1− f (∆i))

× 1

(zi − z)a′+b−2
1

(z̄i − z̄)a+b′−2

〈
O∗3

∆3,ℓ3
(z3, z̄3) · · ·O∗i

∆i,ℓi
(zi, z̄i) · · ·O∗N

∆N ,ℓ
′
N
(zN , z̄N)

〉
+

N

∑
j=3

f (A,B, ℓ j,∗ j,∗′j) f̄ (C,D, ℓ j +1,∗′j,∗′′j )C1(b,a)C1(b′,a′)(−1)a+b+a′+b′

× 1(
z− z j

)a+b′−2
1(

z̄− z̄ j
)a′+b−2

〈
O∗3

∆3,ℓ3
(z3, z̄3) · · ·O

∗′′j
∆ j,ℓ j

(z j, z̄ j) · · ·O∗N
∆N ,ℓN

(zN , z̄N)

〉

+
N

∑
i, j=3
i̸= j

f (A,B, ℓ j,∗ j,∗′j) f̄ (C,D, ℓi,∗i,∗′i)C1(b,a)C1(b′,a′)(−1)a+b+a′+b′ 1(
z− z j

)a−2
1(

z̄− z̄ j
)b

× 1

(z− zi)
b′

1

(z̄− z̄i)
a′−2

〈
· · ·O

∗′j
∆ j,ℓ j+1(z j, z̄ j) · · ·O

∗′i
∆i,ℓi−1(zi, z̄i) · · ·O∗N

∆N ,ℓN
(zN , z̄N)

〉
(C.40)

Similarly, we have,〈
: GCD

(z, z̄)GAB(z, z̄) :
N

∏
n=3

O∗n
∆n,ℓn

(zn, z̄n)

〉

=
(−1)a′+b′+1

π
δ

CD
AB C1(b′,a′)C

(
a′+b−2,a+b′

) N

∑
i=3

(1− f (∆i))

× 1

(zi − z)a+b′−2
1

(z̄i − z̄)a′+b−2

〈
O∗3

∆3,ℓ3
(z3, z̄3) · · ·O∗i

∆i,ℓi
(zi, z̄i) · · ·O∗N

∆N ,ℓN
(zN , z̄N)

〉
+

N

∑
j=3

f̄ (C,D, ℓ j,∗ j,∗′j) f (A,B, ℓ j −1,∗′j,∗′′j )C1(b′,a′)C1(b,a)(−1)a+b+a′+b′

× 1(
z− z j

)a′+b−2
1(

z̄− z̄ j
)a+b′−2

〈
O∗3

∆3,ℓ3
(z3, z̄3) · · ·O

∗′′j
∆ j,ℓ j

(z j, z̄ j) · · ·O∗N
∆N ,ℓN

(zN , z̄N)

〉

+
N

∑
i, j=3
i̸= j

f̄ (C,D, ℓ j,∗ j,∗′j) f (A,B, ℓi,∗i,∗′i)C1(b,a)C1(b′,a′)(−1)a+b+a′+b′ 1(
z̄− z̄ j

)a′−2
1(

z− z j
)b′

× 1

(z̄− z̄i)
b

1

(z− zi)
a−2

〈
· · ·O

∗′j
∆ j,ℓ j−1(z j, z̄ j) · · ·O

∗′i
∆i,ℓi+1(zi, z̄i) · · ·O∗N

∆N ,ℓN
(zN , z̄N)

〉
(C.41)
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We have the correlator of the normalized current with any conformal primary as,〈
GCD

AB (z, z̄)
N

∏
n=3

O∗n
∆n,ℓn

(zn, z̄n)

〉

=−δ
CD
AB

N

∑
i=3

(1− f (∆i))

[
(−1)a+b

π
C1(b,a)C

(
a+b′−2,a′+b

) 1

(zi − z)a′+b−2
1

(z̄i − z̄)a+b′−2

×
〈
O∗3

∆3,ℓ3
(z3, z̄3) · · ·O∗i

∆i,ℓi
(zi, z̄i) · · ·O∗N

∆N ,ℓN
(zN , z̄N)

〉
− (−1)a′+b′

π
C1(b′,a′)C1

(
a′+b−2,a+b′

) 1

(zi − z)a+b′−2
1

(z̄i − z̄)a′+b−2

×⟨O∗3
∆3,ℓ3

(z3, z̄3) · · ·O∗i
∆i,ℓi

(zi, z̄i) · · ·O∗N
∆N ,ℓN

(zN , z̄N)⟩

]

+(−1)a+b+a′+b′C1(b,a)C1(b′,a′)

[
f (A,B, ℓ j,∗ j,∗′j) f̄ (C,D, ℓ j +1,∗′j,∗′′j )

× 1(
z− z j

)a+b′−2
1(

z̄− z̄ j
)a′+b−2

〈
O∗3

∆3,ℓ3
(z3, z̄3) · · ·O

∗′′j
∆ j,ℓ j

(z j, z̄ j) · · ·O∗N
∆N ,ℓN

(zN , z̄N)

〉
− f̄ (C,D, ℓ j,∗ j,∗′j) f (A,B, ℓ j −1,∗′j,∗′′j )

× 1(
z− z j

)a′+b−2
1(

z̄− z̄ j
)a+b′−2

〈
O∗3

∆3,ℓ3
(z3, z̄3) · · ·O

∗′′j
∆ j,ℓ j

(z j, z̄ j) · · ·O∗N
∆N ,ℓN

(zN , z̄N)

〉]
(C.42)

The last term in both (C.40) and (C.41) cancels when we take the commutator. Now in the
above OPE, we can see that the first term which has the graviton soft limits, does not satisfy our
requirement explained in (5.58). Hence we require that the two terms in the first expression be
the same so that they cancel once we take the commutator. This is equivalent to the requirement

C1
(
b′,a′

)
C1
(
a′+b−2,a+b′

)
(−1)a+b =C1(b,a)C1

(
a+b′−2,a′+b

)
(−1)a′+b′ (C.43)

and

a′+b−2 = a+b′−2 (C.44)

Now in (C.43) by substituting the explicit expression from (5.62) we have(
−a′−b+1

)(
−a′−b+2

)
(−a+1)(−a+2)=

(
−a′+1

)(
−a′+2

)(
−a−b′+1

)(
−a−b′+2

)
.

which after using (C.44) gives

(−a+1)(−a+2) =
(
−a′+1

)(
−a′+2

)
(C.45)
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which clearly has solutions. Hence correlator corresponding to this normal order current is,〈
GCD

AB (z, z̄)
N

∏
n=3

O∗n
∆n,ℓn

(zn, z̄n)

〉

= (−1)a+b+a′+b′C1(b,a)C1(b′,a′)

[
f (A,B, ℓ j,∗ j,∗′j) f̄ (C,D, ℓ j +1,∗′j,∗′′j )

× 1(
z− z j

)a+b′−2
1(

z̄− z̄ j
)a′+b−2

〈
O∗3

∆3,ℓ3
(z3, z̄3) · · ·O

∗′′j
∆ j,ℓ j

(z j, z̄ j) · · ·O∗N
∆N ,ℓN

(zN , z̄N)

〉
− f̄ (C,D, ℓ j,∗ j,∗′j) f (A,B, ℓ j −1,∗′j,∗′′j )

× 1(
z− z j

)a′+b−2
1(

z̄− z̄ j
)a+b′−2

〈
O∗3

∆3,ℓ3
(z3, z̄3) · · ·O

∗′′j
∆ j,ℓ j

(z j, z̄ j) · · ·O∗N
∆N ,ℓN

(zN , z̄N)

〉]
(C.46)
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APPENDIX D
SOME REQUIREMENTS FOR ADS SPACETIMES

D.1 Some requirements to work in AdS
The AdSd+1 space is described by embedding it in d + 2 dimensional Minkowski space de-
scribed by (Rd,2,gab). The coordinates of AdSd+1 of length R is a set of points X ≡ (X0,X1, · · · ,Xd).
The spacetime interval is given by,

ds2 =−
(
dX0)2

+
(
dX1)2

+ · · ·+
(

dXd−1
)2

−
(

dXd
)2

We eliminate Xd using the equation of the space to arrive at the metric. Let W = Xd and
X2 = X .X = ηabXaXb;a= 0,1, . . . ,d−2,d−1,ηab follows the mostly positive signature [421].
Hence, W 2 = R2 +X2, which implies,

ds2 = ηabdXadXb −dW 2

∴ ds2 =

(
ηab −

ηaλ ηbρXλ Xρ

R2 +X2

)
dXadXb (D.1)

So, the metric and inverse metric for AdS space are,

gab(X) = ηab −
ηaλ ηbρXλ Xρ

R2 +X2 , gab(X) = η
ab +

ηaλ ηbρXλ Xρ

R2 (D.2)

We have the local coordinates X defined on the bulk of AdS. The covariant derivatives and the
metric in this space are given by

∇a = ∂a −Γa, Γ
c
ab =− 1

R2 Xcgab(X). (D.3)

All of the above equations are exact in R.

D.2 AdS Casimir in the flat space limit
In this appendix, we will explicitly see that the AdS Symmetry Group (SO(d,2)) reduces to the
Poincaré group in the flat space limit of AdS (R → ∞). As a consequence of this, one can also
see that under this limit, the eigenvalue of the AdS Casimir can be written as the sum of the
eigenvalues of the two Casimirs of the Poincaré group, namely, spin and momentum.

To prove that the AdS symmetry group reduces to the Poincaré group, we will look at the
algebra of the generators of a Special Orthogonal group and then use the symmetry generators
we have defined in our formalism to show that indeed the SO(d,2) group reduces to Poincaré
group in d + 1 dimensions. We can start with identifying the SO(d + 1) part of the Poincaré
group. Consider the symmetry generators we defined earlier in Eq.(6.1),

MAB = XA∂B −XB∂A

Using the definition X = (X0, . . . ,Xd,R) and P = (P0, . . . ,Pd,0) for a,b = 0,1, . . . ,d, we have,

Mab = Xa∂b −Xb∂a.
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Clearly, for the d+1 dimensional vector Xa, Mab are the position space generators of the group
SO(d +1).

We can further investigate the momentum space generators, which can be written as

Mab = Pa
∂

∂Pb −Pb
∂

∂Pa , Ma,d+1 = Pa
∂

∂Pd+1 −Pd+1
∂

∂Pa = iPa

√
R2 − ∂

∂P
· ∂

∂P
(D.4)

For large R, Taylor expanding the above expression in orders of 1/R2 gives,

Ma,d+1 = iRPa +O(1/R2) (D.5)

This expression tells us that at leading order, Ma,d+1 resembles the momentum of the particle
(generator of translation) up to a constant. This gets a correction at O(1/R2) due to the AdS
potential which changes the form of these generators such that they are no longer generators of
translation. This is expected as the AdS manifold is not invariant under translation.

Let us find the algebra of the generators corresponding to SO(d+1) and translations in our
notation. We can start with computing [Mab,Mc,d+1], a,b,c = 0,1, . . . ,d.

[Mab,Mc,d+1] =
(
Pa

∂

∂Pb −Pb
∂

∂Pa

)(
iPcR

√
1−

∂ 2
P

R2

)
−
(

iPcR

√
1−

∂ 2
P

R2

)(
Pa

∂

∂Pb −Pb
∂

∂Pa

)
(D.6)

As before, we can Taylor expand the terms for large R. At leading order, we have

[Mab,Mc,d+1] = i(Pa ηbc − iPb ηac)R+O(1/R2) (D.7)

Here, ηab is the flat space metric in d+1 dimensions. This expression at leading order matches
the commutation relations of a rotation generator Jab and the translation generator Kc in flat
space up to an overall negative sign.

[Jab,Kc] = i(Kbηac −Kaηbc)

This semi-direct product structure will break down at higher orders of 1/R2. The consequence
of this is seen in terms of the eigenvalues of the AdS and Poincaré Casimirs.

The Poincaré group has two Casimirs as mass and spin, which is a result of the structure of
the group. However, the AdS symmetry group has only one physically relevant Casimir whose
eigenvalue is a sum of two quantities, i.e., M2R2 = ∆(∆−d)+ l(l +d −2). Here, l(l +d −2)
corresponds to the spin part of the Casimir in Poincaré group (this can be easily seen for d = 3)
while the other part ∆(∆− d) corresponds to the mass Casimir as this is the only term that
survives when spin is zero.

The key observation of this discussion is that the structure of the Poincaré group allows
for two separate Casimirs for mass and spin; however, if we perturb the flat space with an
AdS potential, this structure breaks down, and the AdS Casimir has information about both the
mass and the spin, which was expected as translation symmetry breaks down due to the AdS
potential. This understanding serves as a small step in understanding the bigger question of
how AdS behaves in the large R or the flat space limit and how the mathematical underpinnings
can verify our approach, formalism, and understanding of the problem.
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D.3 Bulk to boundary

The result presented in the main text can also be derived from a more tedious and traditional
method using the “complete" equation of motion for the massive vector field as derived from
the lagrangian, which is really a combined statement about both transversality and the on-shell
condition.

In the first step, in terms of covariant derivatives, the EOM for massive vector field Aν (ν =
0,1, ..,d) is given by, [

gµν(∇
2
X −M2)−∇ν∇µ

]
Aν = 0 (D.8)

Unlike flat space([∂µ ,∂ν ] = 0), [∇µ ,∇ν ]̸= 0, this commutator is precisely the Riemann curva-
ture tensor. Here, M2R2 = ∆(∆−d)+(d −1), where l = 1 for the spinning vector field.

As we have seen, the AdS Casimir splits into mass and spin term in the flat space limit.
Hence we can make the gauge choice, P2 = −m2 = −∆(∆−d)

R2 . As a result of which, we have

M2 = m2 + (d−1)
R2 and the propagator Π̂µν(P;X) must satisfy this equation of motion for the

vector field.

Note that, here, we have used the homogenous function that is dependent on Pµ/|P|. Using
the EOM in terms of covariant derivatives, one would compute its action on the propagator.
The propagator must satisfy, [

gµν

(
∇

2
X −M2)−∇ν∇µ

]
Π̂

νβ = 0 (D.9)

The correct equation can be directly derived from first principles using the free Lagrangian for
a massive vector field. The ambiguity in the order of covariant derivatives is subtle. If one had
to naively promote the partial derivatives to covariant derivatives in the equation of motion for
a massive vector field, they would end up with Eq.(D.9). However, in deriving the equation of
motion for a massive vector field in flat space, one uses the fact that partial derivatives commute
and that’s how we end up with the equation of motion as we know it to be. However, covariant
derivatives do not commute; hence, when deriving the equation of motion for a massive vector
field in AdS, we must take care of this fact, and so, we end up with Eq.(D.9). We have

∇ν(∇µΠ
νβ ) = ∂ν∂µΠ

νβ +(∂νΠ
αβ )Γν

αµ +(∂νΓ
ν
αµ)Π

αβ +(∂νΠ
να)Γ

β

αµ +(∂νΓ
β )αµ)Π

να

+(∂µΠ
βσ )Γν

νσ +(∂µΠ
νσ )Γ

β

νσ − (∂ρΠ
νβ )Γ

ρ

νµ

(D.10)

After some simplifications, we can write

∇ν(∇µΠ
νβ ) = ∂µ∂νΠ

νβ −
(d +2)ηµρΠρβ

R2 −
Xρ∂µΠρβ

R2 −
Xβ ηρσ ∂µΠρσ

R2 −
Xβ ηρµ∂νΠνρ

R2

(D.11)

In the above expression, one must be careful about the last term. One can explicitly check that
for the Bulk to Boundary propagator, the last terms will vanish explicitly. However, this term
will be important when considering the Bulk-to-Bulk propagator equation of motion.
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Substituting the expression of Eq.(D.11) in Eq.(D.9), we get[(
ηµν −

XµXν

X2 +R2

)
(∇2

X −M2)−∂µ∂ν +
Xν∂µ

R2 +
(d +2)ηµν

R2

]
Π

νβ

+
Xβ ηρµ∂νΠνρ

R2 +
Xβ ηρσ ∂µΠρσ

R2 = 0

(D.12)

Here,

∇
2
X Π

νβ = gρσ
∇ρ∇σ Π

νβ = ∂
2
Π

νβ − 1
R2

[
−XρXσ

∂ρ∂σ Π
νβ +2Π

νβ +2Xν
∂αΠ

αβ

+2Xβ
∂αΠ

να − (d +1)Xα
∂αΠ

νβ

]
We will use the definition used in section 6.2 and write the scale covariant function in momen-
tum space as a function of unit momentum vector P̂i =

Pi
|Pi| , and we define the scalar η = iP̂.X ,

and some useful relations in terms of η are,

∂µ = iP̂µ∂η , ∂µη = iP̂µ , X µ
∂µη = η , P2 =−M2, |P|2 = PaPbη

ab. (D.13)

Now, one can consider an ansatz order-by-order to solve the equations for the propagator
as a function of unit vector P̂,

Π̂
νβ

1 = eiMη f νβ

1 (D.14)

Π̂
νβ

2 =
1

R2 eiMη f νβ

2 (D.15)

...

Π̂
νβ

n+1 =
1

R2n eiMη f νβ

n+1 (D.16)

Up to subleading order, we can write,

Π̃
νβ (η) = eiMη

[
f νβ

1 +
1

R2 f νβ

2

]
(D.17)

The EOM from Eq.(D.12) at leading and subleading order takes the form as follows:
At leading Order: [

ηµν(∂
2
X −M2)−∂µ∂ν

]
eiMη f νβ

1 = 0. (D.18)

This equation matches the EOM for a massive vector field in flat space, and the solution matches
the well-known result for the flat space. The solution of the leading order equation in (D.18)
leads to

f νβ

1 = η
νβ − P̂ν P̂β , Tr f1 = d, Pν f νβ

1 = 0 (D.19)

At subleading Order:[
ηµν(∂

2 −M2)−∂µ∂ν

]
eiMη f νβ

2 +
[
ηµν

(
d +(X ·∂X)

2 +(d +1)X ·∂X

)
+Xν∂µ

]
eiMη f νβ

1

−2ηµν

(
Xν(∂αeiM·η) f αβ

1 +Xβ (∂αeiM·η) f αν
1

)
+d Xβ

∂µeiM·η = 0

(D.20)
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Using the parametrization in Eq.(D.13) we can write,

ηµν

(
d − (d +1)M(X .P̂)+M2(X .P̂)2) f νβ

1 −MXβ P̂µ(d +1)+M(X .P̂)P̂β P̂µ

+ηµν

(
−2M(P̂.∂ )+∂

2
)

f νβ

2 −
(
∂ν∂µ +M2P̂µ P̂ν −M

(
P̂µ∂ν + P̂ν∂µ

))
f νβ

2 = 0
(D.21)

Of course, this is the positive energy solution, and on physical grounds, we discard the
negative energy solution.

The solution of the subleading order equation in (D.21) is given by,

f νβ

2 =

[
−(d +2)(P̂ ·X)

4M
− d(P̂ ·X)2

4
+

M(P̂ ·X)3

6

]
f νβ

1

− (d +1)
M

Xβ P̂ν +
1
M

Xν P̂β +
d

M2 P̂β P̂ν

(D.22)
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