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1 Introduction

Here I will explain some of the basics related to Gravitational waves and their for-

mation. We will solve the linearised Einstein’s equations to get to the gravitational

waves in four spacetime dimensions. Later I will explain some of the applications of

Gravitational Wave formations in more than four space-time dimensions. And I will

explain some of the applications in different spacetime dimensions. The review will

be based on [1] and [2].
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2 Gravitaional Waves

Ripples in space-time cause by enegetic gravitational processes in the Universe like

colliding black holes, merging neutron stars, exploding stars, and possibly even the

birth of the Universe itself. Albert Einstein predicted the existence of GWs in 1916

in his GTR. Einstein’s mathematics showed that massive accelerating objects(such

as neutron stars or black holes orbiting each other) would disrupt space-time in such

a way that ’waves’ undulating space-time would propagate in all directions away

from the source. The cosmic ripples would travel at the speed of light, carrying with

them information about their origins, as well as clues to the nature of gravity itself.

In 1993, astrophysicists Russell Hulse and Joseph Taylor received the Nobel Prize in

Physics for their 1974 discovery of a binary pair of neutron stars 21,000 light years

from Earth.

Finally more than 40 years later, on Sep 14, 2015, GWs were directly detected by

LIGO’s interferometers which are generated by two colliding black holes 1.3 billion

light-years away. LIGO can sense the whispers of GWs through the imprint of that

radiation on laser light. It can detect a change in arm length of about 10−19m.

• GWS are ripples in the curvature of spacetime that propagate with the speed

of light. Hence graviton is massless.

• Act as time varying tidal forces.

• These can be described by linearised theory in the far zone. [or wave zone

region (away from source), first order in metric perturbations those are plane

waves that travel at the speed of light.]

Now the question is, why do we need to do the weak field approach to gravitational

radiation? The answer is

• Any observable gravitational radiation is likely to be of very low intensity.

• It is only possible to attach a precise meaning to the concept of an elementary

particle when it is far away from all other particles, and far gravitons this

corresponds to a weak field solution of the field equation.

GWs d=4 have two polarization state (in case of linearly polarized wave: h+, h×)

GWs are unrelated to EM radiation. Here we need to solve multidimensional,

non-linear coupled partial differential equations of spacetimes. Gravitational wave

components of the spacetime metric usually constitute small fractions of the smooth

background metric. Moreover to extract the waves from the background in a simu-

lation requires that one prove the numerical spacetime in the far-field, or radiation

zone which is typically at large distance from the strong-field central source [3]. This
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will be an unprecedented direct test of GR, especially in the highly dynamical and

non-linear strong-field regime.

2.1 Gravitational Waves in Einstein Linearised Theory

Here we study the weak-field approximation of the Gravitational radiation.

• In Linearised theory;

Metric: gµν = ηµν + hµν |hµν | << 1

Connection: Γµ
αβ = 1

2
ηµν(hαν,β + hβν,α − hαβ,ν)

Ricci tensor: Rµν = 1
2
(hµ

α
,να + hν

α
,µα − hµν,α

α − h,µν)

• Introducing the Trace-reversed potential : h̄µν ≡ hµν − 1
2
ηµνh

The name makes sense, since h̄µ
µ = −hµ

µ [The Einstein tensor is simply the

trace-reversed Ricci tensor.]

Einstein’s field equation is given by

Rµν −
1

2
Rgµν = 8πTµν (2.1)

Hence the linearlised field equation in terms of the redefined trace reversed potential

is given by

−h̄µν,α
α − ηµν h̄αβ,

αβ + h̄µα,
α
ν + h̄να,

α
µ = 16πTµν (2.2)

The first term in these linearized equations is the usual flat-space d’Alermbertian,

and the other terms serve merely to keep the equations “gauge-invariant”. Without

loss of generality, one can impose the “gauge conditions”.

Here we are imposing the Harmonic gauge (h̄µα
,α = 0) or Lorentz gauge [4] (Tensor

analogue of Lorentz gauge Aα
α = 0 in electromagnetic theory) Einstein’s full equation

is,

2h̄µν = −16πTµν (2.3)

3 Transverse Traceless Gauge

Now we find the degrees of freedom of the Gravitational waves by constraining the

wave equations [5]. The simplest solution to vacuum equation are,

h̄µν = Re[Aµνexp(ikαx
α)]

Using wave equation;

(i) In Lorentz gauge the wave amplitude components must be orthogonal to the

wave vector kα. Hence the condition, Aµαk
α = 0, [∵ h̄µα

,α = 0]

(ii) Traceless condition : Aα
α = 0,
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(iii) On further restriction by using our remaining gauge freedom, we can change

the gauge while remaining within the Lorentz class of gauges using any vector

solving the wave equation,

AαβU
β = 0 (Uβ ≡ timelike 4-velocity vector)

where U is some fixed 4-velocity, that is, any constant timelike unit vector we

wish to choose.

[under xµ → xµ + ξµ, using remaining gauge freedom]

These are called transverse-traceless(TT)gauge.

Now we have used all our gauge freedom, so any remaining independent components

of Aαβ are physically important.

Suppose the plane wave is travelling in the +z−direction,

h̄(TT )
µν = A(TT )

µν cos[w(t− z)]

Let us go to a Lorentz frame for the background Minkowski spacetime that is to

make a background Lorentz transformation in which the vector Uβ = δβ0 . Our TT

gauge is based on this time like basis vector. Hence

Aα0 = 0 ∀α.

In this frame our spatial coordinate axes are oriented such that the wave is travelling

in the z−direction kα = (♯, 0, 0, ♯). This implies that

Aαz = 0 ∀α.

These two conditions constrain the amplitude tensor Aαβ (Axx = −Ayy, Axy = Ayx).

Hence there are only two independent degrees of freedom Axx and Axy.

Now one can see that, the Gravitational wave has ‘no’ effect on a particle at rest.

This means it will be at constant coordinate position after the passing of the GWs.

Here the interpretation is such that we have found a coordinate system that stays

attached to the particle. Hence we can’t find the effect of the GWs as such. Therefore

we need to study the effect on the relative separation of the two test particles [5,

Chapter 9].

4 Production of GWs

Disturbances in the gravitational field at (t, x) are calculated in terms of the events

on the past light cone. We have in Eq. (2.3) coupled to matter using Green’s func-

tion formalism we have the solution to EFE,
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h̄µν(t,x) = 4

∫
1

|x− y|
Tµν(tr,y)d

3y

where, t = x0, tr = t− |x− y| ≡ Retarded time

and the Retarded Green’s function,

G(xα − yα) = − 1

4π|x− y|
δ(|x− y| − (x0 − y0)) Θ(x0 − y0).

This is the 1/r, coulomb-type gravitational field generated by the four-momenta

of the source’s various independent pieces. Here we don’t have to compute all of

the components of hµν , since the Lorentz gauge condition reduces the number of

independent components or use the TT gauge to find the solution easily. The distur-

bance in the Gravitational field at (t, x) is a sum of the influences from the energy

and momentum sources at the point (tr, x− y) on the past light cone.Here I am not

going to the details of the derivation as it’s not required for this note.

The memory of the burst what I am going to introduce is basically equal to the

change, from before the burst to afterwards, in the TT part of the “1/r, coulomb

type” gravitational field generated by the four-momenta of the source’s various in-

dependent pieces.

4.1 GWs from a Weak-field, slow velocity source

Now we can find the Quadrupole moment tensor of the energy density of the source,

which is basically a constant tensor on each surface of constant time. In the Weak-

field(Newtonian Potential) is defined as Φ << 1 and slow velocity v << 1 [3]. In the

wave zone at large distance r from the source we may expand the retarded integral

in powers of x′i

r
,

h̄ij(t, x
k) =

4

r

∫
d3x′Tij(t− r, x′k)

Using the Tensor-virial theorem we can write,∫
d3x′Tij =

1

2

d2

dt2

∫
d3x′Tttx

′ix′j

Again we have,

I ij(t) ≡
∫

d3x′ρ0(t, x
′k)x′ix′j ≡ Second moment of mass distribution

Hence

h̄ij(t, x
k) =

2

r
Ïij(t− r)

To write the above equation in the TT gauge let us define the reduced Quadrupole

moment :

Iij = Iij −
1

3
ηijI
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Hence we have the quadrupole approximation,

h̄ij
TT (t, xk) =

2

r
ÏTT
ij (t− r)

Here we have used the projection operator P j
i ≡ ηji − nin

j.

where, ni =
xi

r
is the unit vector pointing in wave’s local direction of propagation.

ITT
ij = (P k

i P
l
j −

1

2
PijP

kl)Ikl

and

ITT
ij = ITT

ij

These are the stuff carried away by the GWs:

• Averaging the quadratic first order perturbations hij in the vacuum Einstein

equation behaves as a source term for the background curvature, TGW
ab .

• In nearly Minkowskian frame, averaging over the several wavelength the stress

energy tensor reduces to,

TGW
ab =

1

32π
⟨∂ahTT

ij ∂bh
ij TT ⟩

Listing stuffs carried away by the GWs:

• Outgoing energy flux in radial direction: TGW
tr

• GW luminosity: Equal and opposite of the energy change of the source,

LGW ≡ −dE

dt
= − lim

r→∞

∫
TGW
tr r2dΩ.

= lim
r→∞

r2

16π

∫
⟨ḣ2

+ + ḣ2
×⟩dΩ

where, ∂rh
TT
ij = −∂th

TT
ij for out going radiation.

• Loss of angular momentum:

dJz
dt

= lim
r→∞

r2

16π

∫
⟨∂th+∂ϕh× + ∂th×∂ϕh×⟩dΩ.

• Loss of linear momentum:

dPi

dt
= lim

r→∞
− r2

16π

∫
xi

r
⟨ḣ2

+ + ḣ2
×⟩dΩ
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In weak-field, slow velocity source, we can express the radiated energy in terms of

source’s reduced quadrupole moment,

LGW ≡ −dE

dt
=

1

5
⟨
...
I ij

...
I ij⟩

Similary,
dJi
dt

= −2

5
ϵijk⟨Ïjm

...
I k

m⟩.

These are called the quadrupole formula which can be used to calculate the loss of

energy and angular momentum from any weak-field, slow-velocity source.

5 Geodesic

In flat space, we can parallel transport a vector by simply keeping its Cartesian

components constant. Parallel transport in sphere or on a curved manifold, the

result of parallel transport can depend on the path taken.

• These are the shortest-distance paths in curved spacetime or affine-parametrized

path of the freely falling particle

• They parallel transport their own tangent vectors. i.e. there is no change to

the tangent vector along the path.

• Geodesics are defined by parallel transport or covariant differentiation.

Suppose u is a tangent vector to a curve and this curve is a geodesic parallel trans-

ports its own tangent vector along itself or we can say the directional covariant

derivative is equal to zero along the curve xµ parameterized by λ. One can test

whether any curve is a geodesic or not if ∇uu = 0. This implies the curve with

tangent vector u, which is parametrized by the proper time τ parallel transports its

own tangent vector u. That curve is a geodesic.

On the other hand, the vector field v is parallel transported along the vector

u = d
dτ
, if dv

dλ
= ∇uv = 0. This is the equation of parallel transport.

∇µu
ν = ∂µu

ν + Γν
µλu

λ = 0 ⇒ d2xµ

dτ 2
+ Γµ

νλ(x)
dxν

dτ

dxλ

dτ
= 0.

This is the Geodesic equation (parallel transport of the tangent vector).

5.1 Geodesic Deviation

Geodesic deviation is defined as the relative separation of two infinitesimally close

geodesics. Let us consider two nearby freely falling particles 1 and 2 moving along
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two nearby geodesics xµ(τ) and xµ(τ) +Dµ(τ) with equal values of affine parameter

τ the proper time. Affine parameter is defined as clock time along free-fall trajectory.

d2xµ

dτ 2
+ Γµ

νλ(x)
dxν

dτ

dxλ

dτ
= 0

d2(xµ +Dµ)

dτ 2
+ Γµ

νλ(x+D)
d(xν +Dν)

dτ

d(xλ +Dλ)

dτ
= 0

(5.1)

Evaluating the difference to first order in Dµ, the Geodesic Deviation equation;

uρ∇ρ(u
σ∇σD

µ) = −Rµ
αβγu

αDβuγ

where, uα = dxα

dτ
. Here the LHS is the acceleration of nearby points relative to each

other. uα vector components along the geodesicDµ is the separation 4-vector/deviation

vector/connecting vector.

5.2 Action of Tidal forces on particles

In Local Inertial Frame (LIF), coordinate distances are proper distances. In a co-

ordinate system closely associated with measurements, the LIF at the point of the

first geodesic where D originates. That means in these coordinates the components

of D do indeed correspond to measurable proper distances if the geodesics are near

enough to one another. So,

d2Dµ

dτ 2
= −Rµ

αβγu
αDβuγ

Taking, u → (1, 0, 0, 0) and initially, D → (0, ϵ, 0, 0).

Then at O(hµν),
d2Dµ

dτ 2
= −ϵRµ

0x0.

This shows that Riemann tensor is locally measurable by simply watching the proper

distance changes between nearby geodesics. Now the Riemann tensor is itself gauge

invariant, so its components do not depend on the choice we made between a LIF

and the TT coordinates, since Riemann components are simple in TT gauge, for the

wave travelling in the z-direction, we can write all the components.

In TT gauge, for example, that two particles initially separated in the x-direction

have a separation vector D whose component’s proper length obey,

∂2Dx

∂t2
=

1

2
ϵ
∂2hTT

xx

∂t2
,

∂2Dy

∂t2
=

1

2
ϵ
∂2hTT

xy

∂t2
.

In this local frame, the wave acts like a tidal force. By tidal we mean differential

force. Gravity stretches and squeezes the mass. The tidal force is a force that

stretches a body towards and away from the center of mass of another body due to

a gradient in gravitational field from the other body and this force depends on the

separation vector.
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6 Gravitaional Wave Memory Effect

Memory effects is a permanent change in the relative displacement of test particles.

Classical observable effects in the low-energy region of gravity and gauge theories. All

gravitational wave sources possess some form of gravitational-wave memory. GWs

without memory causes oscillatory deformations but eventually returns the detector

to its initial state. But on the other hand when a GW with memory passes through

an idealized detector, it causes permanent deformation, which we call ‘Memory’ of

the wave.

There are two kinds of Memory effects:

• Linear Memory: arises in systems with unbounded components (two body

scattering, matter or neutrinos ejected from a supernova or gamma-ray burst

jets.

• Non-linear Memory: arises from the contribution of the emitted GWs to the

changing quadrupole and higher mass moments.

6.1 Detection of Memory effect

Experimenters divide the GWs into 4 classes (which can be detected in future):

• bursts: in which the wave field hTT
ij rises from zero, oscillates for only a few

cycles and then returns to zero.

• periodic waves

• stochastic waves

• bursts with memory(BWM): in which hTT
ij rises from zero, oscillates for

a few cycles, and then after a burst of duration ∆t settles down into a non-

zero final value δhTT
ij . For any kind of detector the best way to search for

a BWM is to integrate up the signal for an integration time 1
fopt

, where fopt
is the frequency at which the detector has optimal amplitude sensitivity to

ordinary bursts one cycle long with frequency fopt. It is possible, though not

highly probable, that BWM will be amond the earliest kinds of GWs detected;

therefore experimenters should take them into account when planning their

search strategies and data analyses.

• Memory effects are not included in most numerical relativity models and are

hence typically not incorporated in gravitational waveforms of compact coa-

lescences. Because memory appears in the m = 0 modes of the waveform

which are difficult to resolve with numerical relativity simulations. The slow

build-up of memory during compact binary coalescences causes low-frequency
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contributions to gravitational-wave signal. Recent advances in modelling and

gravitational-wave signal analysis have made it possible to coherently search

for the presence of memory in an ensemble of GW signals. A milestone which

is likely to occur during the LIGO A+/Virgo+ era. [6, 7]

• continuous gravitational waves are almost monochromatic signals generated

typically by rotating, non-axisymmetric neutron stars [7].

Laser interferometers respond to the proper-distance separations between their (ide-

ally) free mirrors. If they are truly free, then they can store the signal forever. They

register the integral of h along the path between the mirrors. Therefore, if their

mirrors were truly free, they would experience a truly permanent deformation when

a BWM passes; in principle they can store the signal forever.

(i) Ground-based interferometers (Advanced LIGO) are sensitive to the memory,

from most sources because they (the LIGO test masses) are not truly free.

The principle sources for the interferometric detectors(LIGO, Virgo, LISA) are

orbiting bodies, for which the dominant signal is oscillatory. However, it has

long been known that GWs will also contain non-oscillatory features, resulting

from a net change in time derivatives of the multiple moments of the system

[8, 9].

(ii) LISA is capable of memory detection1 considering two facts;

– Its proof-masses are truly freely-floating

– The good sensitivity in the low-frequency band

Firstly its proof-masses are truly freely-floating as a result it can maintain a

permanent displacement and secondly the good sensitivity in the low-frequency

band, where the memory sources are stronger.

6.2 Generic form of Linear Memory

More specifically, before the burst is emitted and after it is finished, the source will

consist of a set of freely moving systems that are gravitationally unbound from each

other. For example, two stars flying toward each other or apart, or a neutron-star

binary, which is to be regarded as a single system rather than two independent stars,

since the two stars are bound to each other gravitationally. Let us consider N freely

moving systems labeling by the index A = 1, 2, 3...N . Then the Memory expression

1The authors in [10] propose a method for LISA mission and future missions like Advanced Laser

Interferometer Antenna (ALIA), Advanced Millihertz Gravitational-wave Observatory (AMIGO),

and Folkner as well to detect the gravitational memory effect.
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due to the motion of the source expressed in the geometrized units (G = c = 1) is

given by [9, 11],

△h̄TT
jk = △

[ N∑
A=1

4PA
j P

A
k

k . PA

]TT

(6.1)

by writing it explicitly we have,

△h̄TT
jk = △

N∑
A=1

4MA

r
√

1− v2A

[ vAj v
A
k

1− vAcosθA

]TT

(6.2)

where A ≡ a freely moving system, MA ≡ mass of system A and vA ≡ velocity of

CM of A. This is the expression of the Linear Memory effect.

Here on the right-hand side △ means the final value of the summation(after the

burst) minus the initial value (before the burst), MA is the mass of the system A,

and the other symbols denote the following quantities as measured in the rest frame

of the detector: r is the distance from source to detector, vjA is the velocity of the

CM of the system A, and θ is the angle between vjA and the direction from the source

to the detector. TT means “in the rest frame of the source project out the piece

that is transverse to the line between source and detector and remove that piece’s

trace”, that is, take the transverse, traceless or TT part. The RHS of Eq. (6.2) is pre-

cisely the TT part of the change in the source’s 1/r, coulomb-type gravitational field.

Sources of BWM:

In order to produce a BWM, an astrophysical system, either before the emission of

the burst or afterwards or both, must consist of two or more freely moving masses.

These masses could be, for example, stars, black holes, gravitationally bound clus-

ters of stars or black holes, or bursts of neutrinos; the only constraint is that each

of the masses must move freely and therefore be characterized by a single, constant

4-momentum. Thus the source must consist either of the collision of two or more

initially free masses, or an explosion of an initial single mass into several freely and

independently moving masses. In either case, so long as the source is not at a cos-

mologically large distance, the permanent change in the gravitational-wave field(the

burst memory) δhTT
ij is equal to the ‘transverse traceless (TT)’part of the time-

independent, coulomb-type, 1/r field of the final system minus that of the initial

system2. These examples with the limiting sensitivities of proposed detectors, sug-

gest that BWM could be among the first sources detected.

• Linear Memory[9] arises in systems with unbound components: a binary on

a hyperbolic orbit(two-body scattering), matter or neutrinos ejected from a

supernova or gamma-ray burst jets.

2For some sources the magnitude of the components of δhTT
ij can be estimated from the equation,

δh → Ekin
CM

r .
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• This memory effect tells us about non-periodic sources (binary scattering, su-

pernovae, GRB jets etc.)

6.3 Non-linear or Christodoulou Memory

It arises from the GW stress-energy tensor (GWs produced by GWs)

2h̄µν = −16πτµν ; τµν = Tµν + tµν (6.3)

Here τ depends on the matter stress-energy tensor T , the Landau-Lifshitz pseudoten-

sor t, and other terms quadratic in h. Of the many nonlinear terms in t, there is a

piece that is proportional to the stree-energy tensor for GWs:

tµν ∝ T gw
jk =

1

r2
dEgw

dtdΩ
njnk (6.4)

where dEgw

dtdΩ
≡ GW energy flux and nj ≡ unit radial vector. Eq.(6.4) is the stress-

energy tensor for the gravitational waves.

The correction to the GW field [12], when applying the Green’s function 2−1 to

the RHS of the EFE, will be;

∆h̄TT
jk =

4

r

∫ tr

−∞
dt

′
[ ∫ dEgw

dt′dΩ′

n
′
jn

′

k

(1− n′ .N)
dΩ

′
]TT

(6.5)

where N points from source to observer, ∆ means difference between late and early

time values. This is the Non-linear memory effect. The time integral in the above

equation is what gives the memory its hereditary nature: the memory piece of the

GW field for any value of tr depends on the entire past history of the source.

• discovered in the 1990’s independently by Blanchet & Damour and Christodoulou.

• Arises from the GW stress-energy tensor (GWs produced by GWs)

• A nonlinear contribution also results from the interaction of the waves with

themselves. Nonlinear memory[13] is sourced by the emitted GWs. The non-

oscillatory nature of the memory suggests that it will not be a dominant feature

in interferometric detectors, for which drifts in the background metric are fac-

tored out. However, the step induced during merger may be observable in

pulsar timing measurements, as has been noted in a recent set of papers [14]

• non-oscillatory and visually distinctive in the waveform

• affects the signal amplitude starting at leading (Newtonian-quadrupole) order

• like GW ”tails”, the nonlinear memory is hereditary.

– 12 –



• arises from a contribution of the emitted GWs to the changing quadrupole and

higher mass moments to the radiative mass multipole moments, that is sourced

by the energy-flux of the radiative GWs.

• As discussed by Thorne, the nonlinear memory can be described in terms of a

linear memory in which the unbound masses are the individual radiated gravi-

tons. This implies that nearly all GW sources are sources with memory(even

if the component objects remain bound).

The memory (linear and nonlinear) should not be mistaken as a change in the

monopolar-piece of the 1/R expansion of the metric. Rather it is a change in the

quadrupolar (and higher-order) pieces of the 1/R-spatial-part of the TT-projection

of the metric. It is a purely GW effect, and is not directly connected with the change

in the ‘Coulomb part’ of the metric or the ‘mass loss of the source’ (spherically

symmetric mass loss produces no GWs!) except indirectly through the changing

mass’s effect on the quadrupole and higher-order multipole moments.

6.3.1 Non-linear Memory is Interesting!

• It has a large contribution to the time-domain waveform amplitude

• It is hereditary effect -the memory amplitude at any retarded time depends on

the entire past motion of the source (and not just on the source’s instantaneous

retarded-time configuraiton)

• A unique nonlinear effect because of its non-oscillatory nature, makes it dis-

tinctly visible in the waveform.

• unique among the many other nonlinear effects present in the GW signal. Un-

like other post-Newtonian corrections, the memory affects the waveform at

leading (Newtonian) order. Its ”hereditary” nature allows a small effect to

build-up to a large value over time.

• it is observable and could serve as a test of general relativity.

• can also think of it as a nonlinear correction to the multipoles: T gw
αβ ∼ O(h2)

• affects the waveform at leading-order.

• imparts a unique and visually apparent signature to the waveform.

6.4 Detection of Non-linear Memory

• Considering the memory’s detectability with GW interferometer, we compute

the sky-averaged rms signal-to-noise ratio(SNR)for a detector.

• detectable with the pulsar timing arrays.
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6.5 Memory in Asymptotic flat spacetime

Expression for Memory in asymptotically flat spacetime[2]

∆Dµ =
1

2
∆hTT

µν D
ν → Non-trivial memory

where,

Dν ≡ Geodesic deviation of the pair of test particles

∆hTT
µν ≡ Net change in metric perturbation in TT gauge

Memory Effect vanishes to leading O(1
r
) in all asymptotically flat spacetimes of

even dimension[2] d > 4, that are stationary near spatial infinity and- after a burst of

gravitational radiation-become(nearly) stationary again at late times at null infinity.

Simple example;[15]

Memory for a point particle scattering in linearized gravity:

Change in the displacement of the two test particles; in GICS in the presence of

scattering process

6.6 Detection Basics:

The statistical detector ensemble provides prospects of detecting nonlinear grav-

itational effects predicted by GR. One such effect is the Non-linear gravitational

Memory effect. For detected stellar and intermediate-mass compact binaries, the

induced strain from the memory effect is 1 or 2 orders below the detector noise

background [10]. Most of the energy is radiated at the merger, and the strain in-

duced by the memory effect resembles a step function at the merger time. Hence,

the idea is to stack up all the GW events at the merger times and get the cumula-

tive memory strain with a sufficient signal-to-noise ratio(SNR). The detectors record

this integrated strain response at timescales of the round-trip light travel time. For

observation, a memory SNR of 5 is required for LISA [10].

6.6.1 GW Signal Processing

The signal-to-noise ratio (SNR or S/N) is used to compare a desired signal to the

level of background noise. It is defined as the ratio between signal power to noise

power. In order to analyze the GW data, we have to search for a signal of known

form within the data that contains noise. The process of searching is called Match

filtering, which is well-studied in signal processing. The tool to extract signal from

the noise background is known as a matched or optimal filter. Below, I will describe

mathematically how this can be done.

– 14 –



The data stream is a function of time d(t), which can be written as,

d(t) = h(t) + n(t) (6.6)

where h(t) is signal and n(t) is the noise. For any stationary noise we can define the

noise as,

n(t) ≡ nraw(t)− ⟨nraw⟩ (6.7)

Power Spectral Density (PSD) Sn(f) measures the signal’s power content versus

frequency [16].

7 Fututre Directions

Our Universe is curved, not flat!!

Concerns:

• ∆Dµ involves integration over history of motion of the particles unlike flat

spacetime.

• Dµ get contributions from both background curvature as well as the GWs.

• The retarded propagator of metric perturbation contains a tail term3.

Net Memory4 =
∑

All tail terms from (Reflected waves+original waves)

8 Electromagnetic Memory

5Any gravitational memory effect corresponds to an asymptotic charge generated by

a particular asymptotic symmetry. For example, the displacement memory is related

to the supertranslation charges. Given the particular kind of memory effects and

various extensions of the asymptotic symmentry group, the better ways are to relate

these various memory effect to the various asymptotic charges. The best way to do

that is to use the tetrad formalism [? ? ? ? ]. The precession of a freely falling

gyroscope in the asymptotic region of spacetime caused by gravitational waves and

a net rotation of the gyroscope after the passage of gravitational waves is called the

‘gyroscopic memory effect’. This memory is related to the dual higher derivative or

Gauss-Bonnet charge, that is generated by internal Lorentz transformations [? ].

Also the Pontryagin charge generated by an internal Lorentz transformation is re-

lated to a new subleading memory effect, which is called as the radial kick memory.

3
Chu, Yi-Zen and Starkman, Glenn D. 2011 PhysRevD.84.124020

4[17]
5[? ]
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GW Memory effect arise from the non-oscillatory components of the gravitational

wave signals. These effects are the predictions of GR in the non-relativistic regime

and this has the close connections to the asymptotic properties of the isolated grav-

itating systems [? ].

There are many types of memory effects. Displacement memory, spin memory and

velocity memory effects.

• Displacement memory is a change in the relative separation of two initially

comoving observers due to a burst of GWs

• Spin memory is a portion of the change in relative separation of observers with

initial relative velocity.

As these effects are very small, we can only detect these from the events which are

much louder than those that have been detected so far. So combining data from

multiple events which could be detected in a population of binary mergers.

So the question is how long current and future detectors will need to operate in order

to measure these effects from populations of binary BH systems that are consistent

with the populations inferred from the detections from LIGO, VIRGO and KAGRA

sensitivity for 1.5years.

9 Asymptotic Symmetries:

The word ‘Asymptotic’ comprehends the region we want to explore. The boundary

of asymptotically flat spacetime has the symmetries which directly imply the symme-

tries of the bulk spacetime with certain symmetry enhancements. These symmetries

at the asymptotic infinities make us understand our world with much clearer stand-

points. Literature is rich with such symmetry studies both in the gauge and Gravity

theories.

Asymptotic symmetries in gauge theory is motivated by AdS/CFT correspon-

dence where the asymptotic symmetries of the gravity theory in the bulk spacetime

correspond to the global symmetries of dual QFT through the holographic principle.

Extension of the asymptotic symmetry group has relevance in fields of holography,

soft graviton theorems, memory effect and Black hole information paradox whose

exploration will reveal the mysteries of our universe.

Some references to boost your curiosity:
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